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Abstract 

An analytical method is derived for obtaining the finite deformation of 2-D thin curved 

laminated beams. The general solutions are expressed by fundamental geometric quantities. 

As the radius of curvature is given, the fundamental geometric quantities can be calculated 

to obtain the closed form solutions of the axial force, shear force, bending moment, rotation 

angle, and deformed or un-deformed displacement fields. The closed-form solutions of the 

circular curved laminated beams under pure bending moment case are presented. It shows 

the consistency of the results of present study with those by ANSYS. 
 

Keywords：Finite deformation, Curved laminated beams, Variable curvatures, Analytical 

solutions, Non-linear behavior. 
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林秋文：修平技術學院通識教育中心講師 

二維圓形薄疊層曲樑之有限變形研究 

林秋文 

摘 要 

本研究應用解析方法，分析研究二維圓形薄疊層曲樑之有限變形；其一般通解以

曲樑之基本幾何特性值表示之。當曲率半徑確定時，則曲樑之基本幾何特性值可以計

算出；並藉以求得曲樑之剪力、軸向力、彎矩、旋轉角、變形位移場與未變形位移場

等物理量之閉合型式解。本文發表了懸臂圓形薄曲樑承受純彎矩作用之閉合型式解，

並與有限元素法套裝分析軟體 ANSYS 分析結果比較；結果非常一致。 
 

關鍵詞：有限變形理論、疊層曲樑、解析解、非線性行為。 
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1. Introduction 

The rod theory is one of the most 

developed parts of the elasticity theory. The 

finite deformation of rods in space, are 

always related nonlinear geometric 

behavior. There are two approaches which 

are very common. One is three dimensional 

rods theory. The rod is treated as a three 

dimensional elastic body to which the 

methods of three dimensional elasticity 

theory are applied （Green and Naghdi 

[1]）. The other is one dimensional director 

theory. The rod is treated as a curve 

（Green and Naghdi [2]）. Naghdi [3], Green 

[4] showed the nonlinear behavior of rods 

in both ways. Green [5] showed some 

relationship between two approaches. 

Due to the complexity of 

mathematical models, most studies have to 

adopt some kind of simplification, such as 

small displacement, small shearing strain, 

small rotation or small shearing effect. By 

using finite element method, Li. [6,7] 

derived a finite deformation theory based 

on total Lagrangian description for 2-D and 

3-D beams of zero Poisson’s ratio without 

all the simplifications. Some studied the 

finite deformation under dynamic loading. 

Oguibe [8] investigated the numerical 

study of the elastic plastic response of 

multilayer aluminum cantilever beams 

subjected to an impulse loading. The 

numerical results were compared with the 

experimental results. Attard [9] studied 

finite strain of an isotropic hyper-elastic 

Hookean beam. He used an appropriate 

strain energy density. The shear effect was 

included. The solution was also applied to 

stability behavior design of a helical spring. 

Mauget [10] applied Lagrangian 

coordinates to derive an isotropic 

constitutive law for a large displacement 

formulation of woods. Toi [11] used total 

Lagrangian approach for the super-elastic 

large deformation analysis of a shape 

memory alloy helical springs.  

Most studies focus on straight rods. 

Only few investigate curve rods. 

Atanackovic [12] analyzed the finite 

deformation of a circular ring under 

uniform pressure. Brush [13] derived a 

finite deformation stability equation for 

circular ring under various pressures. He 

also investigated the stability of nonlinear 

equilibrium equations for fluid pressure 

loading. Due to the complexity of 

mathematical models, analytical solutions 

are very limited. Timoshenko [14] showed 

the large deformation of an Elastica. It also 

showed the stability of a straight beam of 

large deformation. In this paper, we apply 

the tangent slope coordinate theory by Lin 

[15, 16, 17, 18] and lamination theory by 

Herakovich [19] to study finite deformation 

2-D of curved laminated beams with 
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circular curvature. 

 

 

 

 

 

 

 

 

 

     

Fig. 1. Deformation of length element 

2. Fundamental Equations  

2.1 Displacement Field and 

Kinematics Relationship 

Consider an elastic curved laminated 

beam with variable curvature whose axis 

lies on a 2-D plane. Assume the rod is 

made of elastic material such that the stress 

is linear to the strain even for finite 

deformation of the beam. Since the strain is 

finite, the displacement of a point, the 

extension of the axis and the rotation angle 

of any cross section are not necessarily 

small. To simplify the analysis, assume 

cross sections do not change the shape and 

size and the cross section is always 

orthogonal to the axis in the deformed 

state. 

To describe the laminated curve beam 

on a 2-D reference configuration, the 

un-deformed length element dS after 

deformation become the deformed length 

element ds. The coordinate of end point 

（X,Y） in the un-deformed state deforms to 

（x,y） shown as Fig. 1. At the un-deformed 

state, the tangent slope angle at （X,Y） is 

denoted by  . At the deformed state, the 

tangent slope at （x,y） is denoted by  . 

The deformation at （X,Y） is denoted by 

（ u,v ）  where u is the horizontal 

displacement, and v is the vertical 

displacement. Hence 

uXx  , vYy  . （1）

The rotation angle φ can be found by 

.  . （2）

Since the strain at the centroid axis is 

defined by ε=（ds-dS）/dS, or 

  .1 dSds  （3）

As in the case of in-extensional curved 

beam, ε=0. For any length element dS, 

there is a corresponding radius of curvature 

R, such that 

.RddS   （4）

Here the radius of curvature R does not 

have to be a constant. Most well known 

curves can be determined by specifying the 

radius of curvature, such as circle, ellipse, 

parabola, cycloid, hyperbola, centenary, 

spiral curves, etc. 

For the deformed length element ds, 

the corresponding radius of curvature is 

denoted by r, i.e. 

Y

R

r

ds

dS





y

v

Y

X u x X
z
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.rdds   （5）

At a distance z from centroid axis, the 

un-deformed length element is denoted by 

  dzRdS z  . （6）

And the deformed length element is 

  dzrdsz  . （7）

The strain at a distance of z defined by 

.
1

R

z
dS

d
z

dS

dSds

z

zz
z










  

（8）

Equation （8） can be simplified to 

.
dS

d
zz

   （9）

Here assume z<<R so that z/R<<1 can 

be neglected. In other words, the curved 

beam is slender in the sense that dimension 

of cross section is much less than the 

dimension of radius of curvature.  

2.2 Constitutive Relationship 

Consider a thin curved laminated 

beam composed of layers. The layers are 

arranged on the centroid plane even the 

fiber can be in different direction. Here the 

effect of shear deformation is neglected. 

The stress-strain relationship for a layer 

along axis direction is  

zQ  11 . （10）

Where σ is the normal stress component 

along tangent direction and Q11 is the 

elastic stiffness coefficient of the laminated 

material. The coefficient Q11 is expressed 

by 

2112

1
11 1 


E
Q . （11）

Where E1 is the longitudinal Young’s 

modulus along fiber direction, ν12 is the 

longitudinal Poisson’s ratio, and ν22 is the 

transverse Poisson’s ratio. For a n-layers of 

laminated beam, the stress-strain 

relationship of Kth layer due to rotation 

transformation 

kkk Q ][][][ 11   . （12）

Where 




4

22
22

6612

4
1111

sinsincos)2(2

cos

QQQ

QQ





 

（13）

With 

2112

212
12 1 





E

Q , 

1266 GQ  , 
2112

2
22 1 


E
Q . 

（14）

In the expression, E2 is the transverse 

Young’s modulus perpendicular to fiber 

direction, G12 is longitudinal shear modulus, 

and γ is the angle between tangential 

direction and fiber direction, respectively. 

The coefficients Q11, Q12, Q66, Q22 are also 

the elastic stiffness coefficients.  

Assume that the width of the cross 

section is b and the total thickness is h=nt 

（ Fig. 2. ）. At each cross section there are 

n-layers from bottom to the top. At the 

bottom it is the first layer and at the top it is 

n-th layer. 
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nth

1st z0 

zn 

At any cross section, the resultant force 

and moment are obtained by integrating the 

stress in each layer through the thickness. 

Here the bending moment is positive if it 

intends to decrease the radius of curvature 

of the centroid axis. The notation and sign 

convention of axial force N, moment M 

together with shear force Q, external 

distributed tangential force qα
 and radial 

force qR are shown in Fig. 3. 

The axial force N and moment of the 

laminate are obtained by integration of 

stresses in each layer through the thickness, 






























1111

1111

DB

BA

M

N . （15）

 

 

 

 

 

 

 

 

 

 

Fig. 2. Layers of laminated curved beam 

Where 

  
 


n

k

z

z k

k

k

dzQbA
1

1111
1

, 

  
 


n

k

z

z k

k

k

dzzQbD
1

2
1111

1

, 

  
 


n

k

z

z k

k

k

zdzQbB
1

1111
1

.   

（16）

The varible  denotes dSd / , the A11 

represents the in-plane stiffness, the B11 

defines the bending-stretching coupling and 

the D11 is the bending stiffness. Since in 

engineering application, most used 

materials are carbon fiber and glass fiber. 

The thickness of carbon fiber is almost the 

same. Therefore in application it is 

convenient to used same thickness. 

However even if different thicknesses are 

used as the curved laminated beam, the 

equations of Eq.（16） are still valid. In the 

case of symmetric laminated, the integral 

B11=0. Then the strain and curvature 

change will be decoupled, i.e. 

11AN    ,   11DM . （17）

Here it is noted that if the longitudinal 

Young’s modulus and the transverse 

Young’s modulus are equal in each layer, 

that implies Q11 = Q22 =  21 E , then in 

the laminate A11=  21 AE , B11 = 0, D11 
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=  21 E =EI. Hence the anisotropic 

material will reduce to be an isotropic 

material. 

 

 

 

 

 

 

 

 

 

 

Fig. 3. Sign convention of forces  

and moment 

2.3 Kinetics 

To demonstrate the force balance, 

there are several ways, such as in X-Y plane 

and expressing all quantities in terms of 

X-Y components. The other choice is to 

express all quantities in terms of reference 

configuration, expressing all quantities in 

axial and shear components or tangent and 

normal components. Another choice is in 

terms of spatial configuration or deformed 

configuration.  

The force balance in the reference 

configuration can be expressed by  

,q
R

Q

dS

dN
  ,Rq

dS

dQ

R

N
  

.Q
dS

dM
  

（18）

The three equations show the balance 

of forces along tangential direction, radial 

direction and moment. The equilibrium 

equations can be obtained by taking free 

body of a curved element. These equations 

are the same as the force balance equation 

in small deformation [15], since the effect 

of finite deformation does not effect 

equilibrium equation in the reference 

configuration.  

The equilibrium equations can also be 

expressed by deformed configuration, 

,
1 






q

r

Q

ds

dN  

,
1 

 Rq

ds

dQ

r

N  



1

Q

ds

dM ; 

  dSdx  cos1 ,   dSdy  sin1 ; 

 
ds

d
BAN

  11111
, 

 
ds

d
DBM

  11111
. 

（19）

 There are three configurations to 

describe the balance equations. Later it will 

show that to solve the system equations, 

some configuration are needed to combined 

and solved. The complicated term arises 

from 1+εterm. This term is retained due 

to the conservative field of external loads. 

However this term also induces a nonlinear 

effect. Note that, from Eq. （19c）, there is 

no stability term. Axial induced moment is 

not included. Hence the system equation 

should promote no buckling mode. It shows 

the finite deformation. 

M

N

Q

N

M

X

q

Rq

Y

Q
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Here assume the external distributed 

loads qα, qR change direction but not in 

magnitude. There are several ways to 

describe equilibrium equations. So far there 

are five equations ：  three forces Eqs. 

（19a, b, c） and two constitutive equations 

Eqs. （19f, g） for N, Q, M, and ε, φ. To 

complete the analysis of finite deformation, 

the displacements and Constitutive 

Relationships are included. Once taking the 

integrals of Eqs. （19d, e）, from Eq. （1）, 

the displacements u, v can be found.  

3. Applications 

3.1 Pure Bending Solutions 

Here to demonstrate the analytical 

solution of a finite deformation of angle-ply 

curved laminated beam, consider a curved 

beam symmetric with respect to Y axis, and 

extending from α=-β to α=β. The 

un-deformed radius of curvature may be 

different. Hence this curved beam can be 

many kinds of curved beams. A couple of 

concentrated moments are applied at both 

ends. Assume that the origin （un-deformed 

state） is located at α=0 （Fig. 3a）. 

Here the deformed configuration is 

used. In the absence of distributed loads qα, 

qR in Eqs. （19a, b） 

0
r

Q

ds

dN , 0
ds

dQ

r

N , （20）

Q
ds

dM
 ; 

cos
ds

dx , sin
ds

dy ; 

 
ds

d
BAN

  11111
, 

 
ds

d
DBM

  11111
 

By using changing of variable Eqs.（20a, b） 

can be induced to 

0Q
d

dN


, 0

d

dQ
N . （21）

Taking derivative of Eq. （ 21a ） , 

combining with Eq.（21b） and eliminating 

the variable Q, the equation yields, 

0
2

2

 N
d

Nd


. （22）

The solution of N is 

 sincos 21 AAN  . （23）

Where A1, A2 are two constants to be 

determine by suitable boundary conditions. 

Taking derivative of Eq.（23）, with the help 

of Eq.（21a）, the variable Q is 

 cossin 21 AAQ  . （24）

At the un-deformed ends α=β, N（

β）=Q（ β）=0. At the deformed ends, 

θ=θβ=β+φ（β）, N（β+φ（β））

=Q（β+φ（β））=0, or 

      0sincos 21   AAN

, 

      0sincos 21   AAQ

. 

（25）

Whereφ（β） is the deformed rotation 

angle at α=β. It is still an unknown and 
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needed to find. The solution of Eqs.（25） is 

021  AA .  

Hence 

0 QN . （26）

With the help of Eq.（26）, integrate Eqs. 

（20c）, once to obtain 

3AM  . （27）

Where A3  is a constant. 

At the free end, the boundary condition is 

   0MM   . （28）

Hence the solution of M is 

0MM  . （29）

Therefore Eqs.（20f,g） yield 

  011111 
ds

d
BA

 , 

  01111 1 M
ds

d
DB 

 . 
（30）

The solution of ε and （1+ε） dφ/ds is 

2
111111

110

BDA

BM




 , 

 
2

111111

1101
BDA

AM

ds

d




 . 
（31）

The solution Eq.（31） show that even 

under pure bending moment, the strain at 

the centroid line is still deformed. This is 

caused by material properties. For a 

symmetric curved laminated beam,B11 =0 

and 0 .  

Then there is no deformation along centroid 

line. It becomes inextensible. Since the 

coefficients of A11, B11 and D11 are all 

positive, and denominator A11D11-B11
2 is 

normally positive, εis then negative. In 

other words, the curved laminated beam 

becomes longer under the positive pure 

bending case. Eq.（31b） is expression in 

terms of un-deformed state for the sake of 

integration. Integrating Eq.（31b） once to 

obtain  

 






0 02

111111

011 Rd
BDA

MA . 
（32）

Whereφ0 is a constants, determined by 

boundary conditions. Here the deformation 

angle is expressed in term of reference 

configuration. Due to symmetric, α=0,φ

（0）=0. Henceφ0=0.  

The Eq.（32） implies 

S
BDA

MA
2

111111

011


 . 

（33）

The deformed angle can be expressed in the 

reference configuration. Furthermore the 

deformed shape can be evaluated by the 

deformed coordinates x, y. The integral of 

Eqs.（20d, e）, 

  ,cos1
0 2

111111

011

2
111111

110 



























 dRS

BDA

MA

BDA

BM
x

 

  .sin1
0 2

111111

011

2
111111

110 



























 dRS

BDA

MA

BDA

BM
y

 

（34）

The integration constants are vanished due 

to the symmetric conditions of α=0, x=0, 

y=0. There is no deformation at the origin. 

The integrals Eq.（4） depend on the 

form in the integral. Since the arc length is 

calculated based on the given curvature. 
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Once the radius of curvature is assigned, 

the arc can be evaluated. Then the integrals 

of Eq.（34） can be found. However, only 

some given radius of curvature can be 

carried out to explicit form （instead of 

integral form）, due to the difficulty of 

integral. In this analysis, the results show at 

least some curves can be calculate 

explicitly, some are still not, even all curves 

can be evaluated by numerical techniques. 

For an angle-ply symmetric curved 

laminated beam, B11=0, 0 .  

The deformed coordinated Eq.（34） 

can be simplified to  

  












0
11

0cos dS
D

M
Rx , 

  












0
11

0sin dS
D

M
Ry  

（35）

Here the procedures show that no need to 

calculate the deformations u, v but directly 

evaluate the deformed coordinates x, y. 

Consider a cantilever angle-ply 

symmetric curved laminated beam with 

variable curvature. The curve starts from 

fixed end α=0 to free end α=β shown as 

Fig. 3a. The origin is located at α=0. A 

concentrated moment M0  is applied at the 

end of α=β. It is equivalent to a free curved 

beam which is symmetric with respect to 

y-axis. The curved beam starts from free 

end α=-β, to α=β. A pairs of concentrated 

moment M0 are applied at both ends shown 

as Fig. 3b. Due to symmetry, only the 

portion from α=0 to α=β is needed to be 

considered. Due to fixed end or symmetry, 

at α=0 the boundary conditions are 

0 , 0u , 0v , 

0 , 0x , 0y .    
（36）

At the free end （α=β）, the axial force, 

shear force and moment are  

  0N ,   0Q ,   0MM  . （37）

Substituting Eqs.（37） into Eqs.（23, 

24）, the constants can be found A1=A2=0, 

A3=M0. Substituting Eq.（37a） into Eqs. 

（34a, b）, the deformed angle of slope 

becomes 

,S   .
11

0

D

M
  （38）

The Eq.（35） can be expression by 

  ,cos
0 


 dSRx  

  .sin
0 


 dSRy  
（39）

In Eqs.（39） , the constants from 

integrating vanish because at α=0, x=y=0. 

Once the radius of curvature of the curve 

beam is specified, the deformed coordinates 

can be found. The displacements u, v with 

the help of Eq.（1） is then  

,
2

1
sin

2

1
sin2

0 













 


 dSSRu  

.
2

1
cos

2

1
sin2

0 





 









 dSSRv   

（40）

Note that the radius of curvature r 

after deformation can be calculated by 

taking derivatives of Eqs.（39）. It can be 
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simplified to  

.
1 R

R
r


  （41）

It is seen that if the curve is a circle, or 

R is a constant, then r is a constant as well 

and only changes magnitude. The 

magnitude factor is 1/（1+λR）. 

 

 
Fig. 3a. A cantilever curved beam under a 

concentrated moment M0. 
Fig. 3b. Simple curved beams under a pair 

of moment M0. 

However for a curve of variable 

curvature, R is not a constant. The 

deformed radius of curvature changes to 

another function by 1/（1+λR）. Therefore 

the curve changes type as it is deformed. 

3.2 Finite deformation of circular 

laminate curve beam under 

pure bending moments 

For an angle-ply circular laminated 

beam, choose the radius as the 

characteristic radius, i.e.  

1R . （42）

It is equivalent to X=sinα, Y=1-cosα in 

parametric form. The solution of 

displacements u, v in Eq. （40） can be 

integrated to yield  

 
,sin

1

1sin 








u  

.
1

cos
cos

1 









v  

（43）

The deformed coordinates from Eqs. （39） 

are  

  ,1sin
1

1 





x  

  





 1cos1
1

1
y . 

（44）

The coordinates of Eqs. （44） are a circle 

in parametric form. The radius of curvature 

is 1/（1+λ）. In other words as the moment 

M0 increases, the radius of curvature 

decreases by the scale of 1/（1+λ）. Since 

the strain at the centroid axis is zero, the 

circumference can be calculated to close 

the circular curve. The required moment to 

close the circle is  

Y

0M 0M

0M

x



y

X
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).1(
0

11 



R

D
M

closeo
 

Or, the required λclose to close the circle is 

.1

close

 （45）

For instance to close a quadrant 

symmetric curve laminated beam 

（from –π/4 to π/4）, the required moment is 

λclose=3. The deformed curves of a quarter 

circular at various closed moments are 

shown in Fig. 4. 

Fig. 4. Symmetric angle-ply circular curved 
laminated beams from –π/4 to π/4 
under a couple of moment M0. 

The final angle versus close moment 

of angle-ply laminates are shown in Fig. 5. 

Fig. 5. The final angle versus close moment 
of various 4-layers stacking 
sequences. 

Consider a cantilever angle-ply 

symmetric circular curved laminated beam 

subjected to a pure bending moment 

M0=D11/Ro, the curve starts from fixed end 

α=0 to free end α=π/2. Beams 

cross-section consist with 2 layers of 

carbon fiber T300/5208 [-θ,θ] Material 

properties are E1=132Gpa, E2=10.8Gpa  

and ν 12=0.24, G12=5.65Gpa, M= 

1.867572156N ∙ m each layer thickness 

h=1mm, the width is b=20mm. 

The fiber orientation angles versus 

equivalent λeq of different stacking numbers 

are shown in Fig. 6. And the fiber 

orientation angles versus bending stiffness 

of different stacking numbers are shown in 

Fig. 7.  

 

Fig. 6. The fiber orientation angles versus 
equivalent λeq of different stacking 
numbers （γ=0  to γ=π/2） 

Figure 6, shows the cantilever angle-ply 

symmetric circular curved laminated beam 

under same apply moment. The different 

fiber orientation angles stacking sequences 

0
11

0 
D

M


23
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from 0 toπ/2, it can be seen the equivalent 

λ of curved laminated beam will increases 

to the tip at π /4. Fig. 7, shows the 

cantilever angle-ply symmetric circular 

curved laminated beam.  

 

Fig. 7. The fiber orientation  angleγ
versus bending stiffness of 
different layer numbers （γ=0 
toγ=π/2） 

The different fiber orientation  angles 

and layer numbers from 0 to π/2, it can be 

seen the bending stiffness of curved 

laminated beam, D11, exhibit minima at γ

=π/4. With the helps of Eq.（13）, the 

bending stiffness D11 can be expressed in 

terms of the fiber orientation angles and 

layer numbers n using Eq.（46）, 








 
 11

3

11 12
Q

hb
D . （46）

Noted that, laminate consisting of an 

equal number of equal-thickness layers at 

+θ and –θ fiber orientations are called 

angle-ply laminates, such laminates are 

specially orthotropic. Because such 

laminate do not exhibit coupling between 

in-plane extensional and shear response. 

For a symmetric curved laminated beam, 

B11 =0. The deformation determine by D11. 

The deformations of different stacking 

sequences are shown in Fig. 8. 

 

Fig. 8. The deformation shapes of   
different stacking sequences 

Figure 9, shows the free end deformed 

x-coordinates and y-coordinates with 

various λ from 0 to 10. As λ increases to 7, 

15,…. The cantilever angle-ply symmetric 

circular curved laminated beam will always 

spin to fixed end （x,y）=（0,0）. 
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Fig. 9. The free end deformed coordinate of 
cantilever circular curved beam

（from 0 to π/4） 

The deformation shapes shown as Fig. 

10. 

Fig. 10. The deformation of circular curved 
beam （ from 0 to π/4）  under 
various λ. 

3.3 ANSYS results 

Consider a cantilever angle-ply 

symmetric circular curved laminated beam 

subjected to a pure bending moment 

M0=D11/Ro, the curve starts from fixed end 

α=0 to free end α=π/2. Beams 

cross-section consist with 2n layers of 

carbon fiber T300/5208 [02n], Material are  

 

E1=132Gpa, E2=10.8Gpa and ν12=0.24,  

G12=5.65Gpa, each layer thickness 

t=1mm, the total thickness is h=2nt and the 

width is b=20mm. Using ANSYS large 

deformation static analysis, the various R/h 

versus deformed displacements u is shown 

in Table 1. 

Table 1. The various R/h versus deformed displacements u. 

hR  2500 1250 1000 500 200 100 10 

u  0.999737 0.999987 0.999987 0.999751 0.999751 0.999751 0.999751 

Error（%） 0.0263% 0.0013% 0.0013% 0.0249% 0.0249% 0.0249% 0.0249% 

Where h/b =1/10. 

It shows the consistency of the results 

of present study with those by ANSYS.  
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4. Conclusions 

This paper has presented an analytical 

method for obtaining the finite deformation 

of 2-D circular curved laminated beam. The 

rod axis is either inextensible or extensible. 

The curved beam is slender in the sense 

that dimension of cross section is much less 

than the dimension of radius of curvature. 

To derive the analytical method for the 

general solutions, one can introduce the 

coordinate system defined by the radius of 

centroidal axis and the angle of tangent 

slope.  

The general solutions expressed by 

fundamental geometric quantities form a 

set of equations having seven unknown 

constants. The seven constants can be 

directly determined by suitable boundary 

conditions.  As the radius in terms of the 

tangent slope angle is given, the 

fundamental geometric quantities can be 

calculated to obtain the closed form 

solutions of the axial force, shear force, 

bending moment, rotation angle, and   

displacement fields at any cross-section of 

circular curved laminated beams. These 

results of the applications indicate that the 

closed-form general solutions derived by 

the analytical method would be valid for 

in-plane thin angle-ply circular curved 

laminated beams. Thus the analytical 

method would be useful to engineers 

attempting to obtain the exact expressions 

for thin angle-ply circular curved laminated 

beams in engineering applications. 

Especially, helical spring and clockwork 

spring production and process. 
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