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Finite Deformation of 2-D Thin Circular

Curved Laminated Beams

Chiu-Wen Lin

Abstract

An analytical method is derived for obtaining the finite deformation of 2-D thin curved
laminated beams. The general solutions are expressed by fundamental geometric quantities.
As the radius of curvature is given, the fundamental geometric quantities can be calculated
to obtain the closed form solutions of the axial force, shear force, bending moment, rotation
angle, and deformed or un-deformed displacement fields. The closed-form solutions of the
circular curved laminated beams under pure bending moment case are presented. It shows

the consistency of the results of present study with those by ANSYS.

Keywords : Finite deformation, Curved laminated beams, Variable curvatures, Analytical
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1. Introduction

The rod theory is one of the most
developed parts of the elasticity theory. The
finite deformation of rods in space, are
always related nonlinear geometric
behavior. There are two approaches which
are very common. One is three dimensional
rods theory. The rod is treated as a three
dimensional elastic body to which the
methods of three dimensional elasticity

theory are applied (Green and Naghdi

[1]) . The other is one dimensional director
theory. The rod is treated as a curve
(Green and Naghdi [2]) . Naghdi [3], Green
[4] showed the nonlinear behavior of rods
in both ways. Green [5] showed some
relationship between two approaches.

Due to the

mathematical models, most studies have to

complexity  of

adopt some kind of simplification, such as
small displacement, small shearing strain,
small rotation or small shearing effect. By
using finite element method, Li. [6,7]
derived a finite deformation theory based
on total Lagrangian description for 2-D and
3-D beams of zero Poisson’s ratio without
all the simplifications. Some studied the
finite deformation under dynamic loading.
Oguibe [8]

study of the elastic plastic response of

investigated the numerical

multilayer aluminum cantilever beams

subjected to an impulse loading. The

numerical results were compared with the
experimental results. Attard [9] studied
finite strain of an isotropic hyper-elastic
Hookean beam. He used an appropriate
strain energy density. The shear effect was
included. The solution was also applied to
stability behavior design of a helical spring.
Mauget [10]

coordinates  to

applied  Lagrangian

derive an isotropic
constitutive law for a large displacement
formulation of woods. Toi [11] used total
Lagrangian approach for the super-elastic
large deformation analysis of a shape
memory alloy helical springs.

Most studies focus on straight rods.
Only few investigate rods.
Atanackovic [12]

deformation of a circular ring under

curve
analyzed the finite
uniform pressure. Brush [13] derived a
finite deformation stability equation for
circular ring under various pressures. He
also investigated the stability of nonlinear
equilibrium equations for fluid pressure
loading. Due to the complexity of
mathematical models, analytical solutions
are very limited. Timoshenko [14] showed
the large deformation of an Elastica. It also
showed the stability of a straight beam of
large deformation. In this paper, we apply
the tangent slope coordinate theory by Lin
[15, 16, 17, 18] and lamination theory by
Herakovich [19] to study finite deformation
2-D of curved laminated beams with
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circular curvature.
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Fig. 1. Deformation of length element

2. Fundamental Equations

2.1 Displacement Field and

Kinematics Relationship

Consider an elastic curved laminated
beam with variable curvature whose axis
lies on a 2-D plane. Assume the rod is
made of elastic material such that the stress
is linear to the strain even for finite
deformation of the beam. Since the strain is
finite, the displacement of a point, the
extension of the axis and the rotation angle
of any cross section are not necessarily
small. To simplify the analysis, assume
cross sections do not change the shape and
size and the cross section is always
orthogonal to the axis in the deformed
state.

To describe the laminated curve beam

on a 2-D reference configuration, the

dS after

deformation become the deformed length

un-deformed length element

element ds. The coordinate of end point
(X,Y ) in the un-deformed state deforms to

(x,y ) shown as Fig. 1. At the un-deformed
(XY) is
denoted by . At the deformed state, the

state, the tangent slope angle at

(x,y ) 1is denoted by 4.

(XY ) is denoted by

the
the

tangent slope at
The deformation at

Cuv )

displacement,

where wu is horizontal

and v is vertical
displacement. Hence
x=X+u, y=Y+v. (1)
The rotation angle ¢ can be found by

(2)
Since the strain at the centroid axis is
defined by e= (ds-dS ) /dS, or

ds = (1+ £)ds.

p=0-a..

(3)

As in the case of in-extensional curved
beam, ¢=0. For any length element dS,
there is a corresponding radius of curvature
R, such that
dS = Rda. (4)
Here the radius of curvature R does not
have to be a constant. Most well known
curves can be determined by specifying the
radius of curvature, such as circle, ellipse,
parabola, cycloid, hyperbola, centenary,
spiral curves, etc.

For the deformed length element ds,
the corresponding radius of curvature is

denoted by 7, i.e.
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ds =rd®. (5)
At a distance z from centroid axis, the

un-deformed length element is denoted by

ds. =(R+z)da - (6)
And the deformed length element is
ds, = (r + z)dH . (7)
The strain at a distance of z defined by
do
E+z——
oS, a5 ®
z 1+ —
R

Equation (8) can be simplified to

do
=g+z——.
g, =6+z2 7S (9)

Here assume z<<R so that z/R<</ can
be neglected. In other words, the curved
beam is slender in the sense that dimension
of cross section is much less than the

dimension of radius of curvature.

2.2 Constitutive Relationship

Consider a thin curved laminated
beam composed of layers. The layers are
arranged on the centroid plane even the
fiber can be in different direction. Here the
effect of shear deformation is neglected.
The stress-strain relationship for a layer
along axis direction is
c=0,¢.- (10)
Where ¢ is the normal stress component

along tangent direction and Q; is the
elastic stiffness coefficient of the laminated

material. The coefficient Q;; is expressed

E,
1-v,v,,

0, = (11>

Where E; is the longitudinal Young’s

modulus along fiber direction, v 1 is the
longitudinal Poisson’s ratio, and v - is the

transverse Poisson’s ratio. For a n-layers of

laminated beam, the stress-strain

relationship of K, layer due to rotation

transformation
[0, =10, Lie], - (12)
Where
Ql =0, cos* Y+

20, +20) cos’ ysin® y + Oy, sin'y (13)
With
O, = L

l V12V21
i (14)
Oi =Gn» 0, = 2
1- ViV

In the expression, E, is the transverse
Young’s modulus perpendicular to fiber
direction, G, is longitudinal shear modulus,
and ) is the angle between tangential
direction and fiber direction, respectively.
The coefficients Q;; Q)2 Ogs Q22 are also
the elastic stiftness coefficients.

Assume that the width of the cross
section is b and the total thickness is hA=nt
( Fig. 2. ) . Ateach cross section there are
n-layers from bottom to the top. At the
bottom it is the first layer and at the top it is
n-th layer.
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At any cross section, the resultant force
and moment are obtained by integrating the
stress in each layer through the thickness.
Here the bending moment is positive if it
intends to decrease the radius of curvature
of the centroid axis. The notation and sign
convention of axial force N, moment M

together with shear force @, external

distributed tangential force ¢, and radial
force grare shown in Fig. 3.

The axial force N and moment of the
laminate are obtained by integration of

stresses in each layer through the thickness,
N 4, B, | ¢
= : 15
{M} {BH DH}L”} (15)

— b —

Zn

1.\'/‘

20

Fig. 2. Layers of laminated curved beam

Where
A, =ibf [Ql]kdm
k=1 k-1

Dy =20 [B.] =" (16)

By, = ,Zi;bj.zzkk,, [Ql]k zdz -

The varible o' denotes dp/ds , the Ay

represents the in-plane stiffness, the By,
defines the bending-stretching coupling and
the D;; is the bending stiffness. Since in
engineering  application, most used
materials are carbon fiber and glass fiber.
The thickness of carbon fiber is almost the

same. Therefore in application it is

convenient to used same thickness.
However even if different thicknesses are
used as the curved laminated beam, the
equations of Eq. (16 ) are still valid. In the
case of symmetric laminated, the integral
B;;=0. Then the strain and curvature
change will be decoupled, i.e.
N=4, , M=D,p. (17)
Here it is noted that if the longitudinal
Young’s modulus and the transverse
Young’s modulus are equal in each layer,
that implies O = O» =E’/(1—v2), then in
the laminate A,=£'4/(1-v*), Bi; = 0, Dy
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= E'/(1-v*) =EI. Hence the anisotropic
material will reduce to be an isotropic

material.

M

M
S i

Q**++§+%**Q
qr

\j

Fig. 3. Sign convention of forces

and moment

2.3 Kinetics

To demonstrate the force balance,
there are several ways, such as in X-Y plane
and expressing all quantities in terms of
X-Y components. The other choice is to
express all quantities in terms of reference
configuration, expressing all quantities in
axial and shear components or tangent and
normal components. Another choice is in
terms of spatial configuration or deformed
configuration.

The force balance in the reference

configuration can be expressed by

dN N d

7+2 _qa’ _7+7Q__qR’

dS R R dS (18)
a_,

ds '

The three equations show the balance
of forces along tangential direction, radial
direction and moment. The equilibrium
equations can be obtained by taking free
body of a curved element. These equations
are the same as the force balance equation
in small deformation [15], since the effect
of finite deformation does not effect
equilibrium equation in the reference
configuration.

The equilibrium equations can also be

expressed by deformed configuration,

dﬂ+gz_q7a
ds r l+¢&’
_N,dO__ 4 M _ 0O .
o ds l+&  ds l+¢

dx=(1+¢)cos@dS , dy=(1+¢)sinads; (19)

N = A“5+B“(1+g)%,
s

M :B“g+D“(1+g)?-
AY

There are three configurations to
describe the balance equations. Later it will
show that to solve the system equations,
some configuration are needed to combined
and solved. The complicated term arises
from /+ sterm. This term is retained due
to the conservative field of external loads.
However this term also induces a nonlinear
effect. Note that, from Eq. (19c¢) , there is

no stability term. Axial induced moment is
not included. Hence the system equation
should promote no buckling mode. It shows

the finite deformation.
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Here assume the external distributed
loads ¢, gr change direction but not in
magnitude. There are several ways to
describe equilibrium equations. So far there

are five equations three forces Egs.

(19a,b,¢) and two constitutive equations
Egs. (19f, g) for N, O, M, and ¢, ¢. To
complete the analysis of finite deformation,
the displacements and  Constitutive
Relationships are included. Once taking the
integrals of Eqs. (19d, e) , from Eq. (1),

the displacements u, v can be found.

3. Applications

3.1 Pure Bending Solutions

Here to demonstrate the analytical
solution of a finite deformation of angle-ply
curved laminated beam, consider a curved
beam symmetric with respect to Y axis, and
o=p. The

un-deformed radius of curvature may be

extending from oa=-f to

different. Hence this curved beam can be
many kinds of curved beams. A couple of
concentrated moments are applied at both

ends. Assume that the origin (un-deformed
state ) is located at a=0 (Fig.3a) .

Here the deformed configuration is

used. In the absence of distributed loads ¢,,

grinEgs. (19a,b)
aN O _, _N 40 _,, (20)
ds r rods

am

P
é=c05q9s @zsinﬁ;
ds ds

N= A115+B“(1+g)%,
A

M =B“g+DH(1+g)‘;—¢
AY

By using changing of variable Egs.(20a, b )
can be induced to
diN-l-Q:O’ —N+d£20'
do do

Taking derivative of Eq. ( 2la ) ,

(21)

combining with Eq. (21b) and eliminating
the variable Q, the equation yields,
d*N

The solution of N is
N =A4,cos0+ A,sinf. (23)

Where A4;, A, are two constants to be
determine by suitable boundary conditions.
Taking derivative of Eq.(23 ), with the help

of Eq. (21a) , the variable Q is

O = A, sinf—A,cos6 - (24)
At the un-deformed ends a=p, N (+

£ ) =0 (£ &) =0. At the deformed ends,

O=0s=G+¢ (F),N(G+p (L))

=0 (F+y¢ (L)) =0,or

N = 4 cos(B+ p(B))+ 4,sin(B + p(B)) = 0

0 - 4 cos(p+ p(6))- Ausin(pr (g -0 2

Where ¢ () is the deformed rotation

angle at a=p. It is still an unknown and
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needed to find. The solution of Eqgs.(25) is
A =4,=0.

Hence

N=0=0. (26)
With the help of Eq. (26)

(20c) , once to obtain

, integrate Eqs.

M =4,. (27)
Where 4; 1is a constant.
At the free end, the boundary condition is

M(B+p(B))=M, (28)
Hence the solution of M is
M=-M,. (29)

Therefore Eqs. (20f,g) yield

A115+B”(1+5)(ZS 0>

J (30)
Be+D,(1+&) L =M,
ds

The solution of & and (I+ & ) dp/dsis

_ _MOBII .
2
A11D11 _Bll (31)
(l+€)d¢ M4,

2
ds A11D11 _Bll

The solution Eq. (31 ) show that even

under pure bending moment, the strain at
the centroid line is still deformed. This is
caused by material properties. For a
symmetric curved laminated beam,B;; =0
ande =0.

Then there is no deformation along centroid
line. It becomes inextensible. Since the
coefficients of A;;, B;; and Dj;; are all

positive, and denominator A D -B;S s

normally positive, &£1is then negative. In
other words, the curved laminated beam
becomes longer under the positive pure
bending case. Eq. (31b)

terms of un-deformed state for the sake of

is expression in

integration. Integrating Eq. (31b) once to

obtain

Rda+¢)0 (32)

»=
J‘ AllD 11
Where @ is a constants, determined by

boundary conditions. Here the deformation
angle is expressed in term of reference

configuration. Due to symmetric, a=0, ¢

(0) =0. Hence @ ,=0.

The Eq. (32) implies
AIIMO
p=—— TS 33
A11D11_3112 ( )

The deformed angle can be expressed in the
reference configuration. Furthermore the
deformed shape can be evaluated by the
deformed coordinates x, y. The integral of
Egs. (20d,¢) ,

= 0[ __ MBy ]cos[a-%—iA”Mo >
AnDu Bn AuDu_Bu

y:r lfiMoB” sin a+7A“M°
! AHDH*BHZ AHDn*BHz

The integration constants are vanished due

S]R(a)da,

(34)
SJR(a)daA

to the symmetric conditions of a=0, x=0,
y=0. There is no deformation at the origin.
The integrals Eq. (4) depend on the
form in the integral. Since the arc length is
calculated based on the given curvature
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Once the radius of curvature is assigned,
the arc can be evaluated. Then the integrals

of Eq. (34) can be found. However, only

some given radius of curvature can be

carried out to explicit form (instead of
integral form ) , due to the difficulty of

integral. In this analysis, the results show at

least some curves can be calculate
explicitly, some are still not, even all curves
can be evaluated by numerical techniques.
angle-ply
laminated beam, B;;=0, ¢ =0.

The deformed coordinated Eq. (34 )

For an symmetric  curved

can be simplified to

xX= I: R(a)cos(a +];‘:dea ’

y= I:R(a)sin(mMOSJda (35)

I
Here the procedures show that no need to
calculate the deformations u, v but directly
evaluate the deformed coordinates x, y.

angle-ply
symmetric curved laminated beam with

Consider a cantilever
variable curvature. The curve starts from
fixed end a=0 to free end a=p shown as
Fig. 3a. The origin is located at a=0. A
concentrated moment M, is applied at the
end of a=p. It is equivalent to a free curved
beam which is symmetric with respect to
y-axis. The curved beam starts from free
end a=-f, to a=f. A pairs of concentrated
moment M, are applied at both ends shown
as Fig. 3b. Due to symmetry, only the

portion from a=0 to a=p is needed to be

considered. Due to fixed end or symmetry,

at a=0 the boundary conditions are

0=0, u=0, v=0, 36)

6=0, x=0, y=0.

At the free end (a=p ), the axial force,

shear force and moment are

N(B)=0, O(B)=0, M(B)=M,- (37)
Substituting Eqs. (37) into Egs. (23,

24) , the constants can be found 4;=4,=0,

A3=M,. Substituting Eq. (37a) into Egs.

(34a, b) , the deformed angle of slope

becomes

0=a+AS, A=, (38)
11

The Eq. (35) can be expression by

X = I: Rcos(a + AS)da,

. (39)
y= L Rsin(a + /1S)da.

In Egs. (39) , the constants from
integrating vanish because at a=0, x=y=0.
Once the radius of curvature of the curve
beam is specified, the deformed coordinates

can be found. The displacements u, v with
the help of Eq. (1)

u:J.QZRsin a+l/”tS sin 1/?VS da,
0 2 2

1s then

| | (40)
V= r 2Rsin(l§jcos(a + ﬂS)da.
0 2 2
Note that the radius of curvature r
after deformation can be calculated by

taking derivatives of Egs. (39) . It can be
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simplified to

R
r= .
1+ AR

(41)

It is seen that if the curve is a circle, or

R is a constant, then 7 is a constant as well

y

Fig. 3a. A cantilever curved beam under a
concentrated moment M.

However for a curve of variable
The
deformed radius of curvature changes to
another function by 1/ (1+ AR ). Therefore

curvature, R is not a constant.

the curve changes type as it is deformed.
3.2 Finite deformation of circular
laminate curve beam under

pure bending moments

For an angle-ply circular laminated

beam, choose the radius as the
characteristic radius, i.e.

R=1. (42)
It is equivalent to X=sina, Y=I-cosa in
parametric  form. The solution of
displacements u, v in Eq. (40) can be

integrated to yield

and

only changes magnitude. The

magnitude factoris I/ (I+ AR ) .

Fig. 3b. Simple curved beams under a pair

of moment M,.
u= 7sin§1:/{l)a —-sina,
(43)
cosa
=——7>C0Sx — .
1+4 1+4
The deformed coordinates from Eqs. (39)
are
x= ﬁsin(l +A)a,
+
(44)

1
y= m[l—cos(l + A

The coordinates of Eqs. (44) are a circle
in parametric form. The radius of curvature
is 1/ (1+2 ) . In other words as the moment
M,

decreases by the scale of 1/ (I1+A ) . Since

increases, the radius of curvature

the strain at the centroid axis is zero, the
circumference can be calculated to close
the circular curve. The required moment to

close the circle is
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D,
o = (==D).
Ry B
Or, the required A to close the circle is
T
/10[0:@ = E_l (45)

For instance to close a quadrant

symmetric ~ curve  laminated  beam
(from —7/4 to /4) , the required moment is
Aciose=3. The deformed curves of a quarter
circular at various closed moments are

shown in Fig. 4.

JN INETTNSN NSRRI ANERNENRT) NUTE)

Fig. 4. Symmetric angle-ply circular curved
laminated beams from —n/4 to /4
under a couple of moment M.

The final angle versus close moment

of angle-ply laminates are shown in Fig. 5.

— - — [45/-45/-45/45]
[0/-0/-0/0]

e [37.5(-37.5/-37.5(37.5]
= [30/-30/-30430]

+  [22.5(-22.5(-22.5(22.5]
s [15/-15/-15/15]

= [7.5/-7.5¢-7.5(7.5]

Fig. 5. The final angle versus close moment

of various 4-layers  stacking
sequences.
Consider a cantilever angle-ply

symmetric circular curved laminated beam

subjected to a pure bending moment
My=D;/R,, the curve starts from fixed end
a=m/2.
cross-section consist with 2 layers of
carbon fiber T300/5208 [- £, £] Material
properties are FE;=132Gpa, E,=10.8Gpa
and v =024, GI12=565Gpa, M=
1.867572156N - m each layer thickness
h=I1mm, the width is b=20mm.

The fiber orientation angles versus

o=0 to free end Beams

equivalent /., of different stacking numbers
are shown in Fig. 6. And the fiber
orientation angles versus bending stiffness
of different stacking numbers are shown in
Fig. 7.

-
—_— .

Plp angle

Fig. 6. The fiber orientation angles versus
equivalent 4., of different stacking
numbers ( =0 to y=7/2)

Figure 6, shows the cantilever angle-ply
symmetric circular curved laminated beam
under same apply moment. The different
fiber orientation angles stacking sequences
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from 0 to 7 /2, it can be seen the equivalent
A of curved laminated beam will increases
to the tip at 7 /4. Fig. 7, shows the
cantilever angle-ply symmetric circular

curved laminated beam.

144 N .
\ g
124 ‘\ I
10 \ 'I
‘\ ‘/
* Fd
~ . — [-88]
Dy 84 e e
= N\ o~ || — - e,
64 \ / — - [B8]
s
N L~
4+ -

] 0.5 1 1.5
Ply angle

Fig. 7. The fiber orientation angle )
versus bending stiffness of
different layer numbers (y=0
toy=m/2)

The different fiber orientation angles
and layer numbers from 0 to 7/2, it can be
of curved

seen the bending stiffness

laminated beam, D;; exhibit minima at )

=n/4. With the helps of Eq. (13) , the

bending stiffness D;; can be expressed in

terms of the fiber orientation angles and

layer numbers n using Eq. (46) ,

D, :(bl—fglJ (46)
Noted that, laminate consisting of an

equal number of equal-thickness layers at

+0 and —0 fiber orientations are called
angle-ply laminates, such laminates are
specially  orthotropic.  Because such
laminate do not exhibit coupling between
in-plane extensional and shear response.
For a symmetric curved laminated beam,
Bj; =0. The deformation determine by D;;.

The deformations of different stacking

sequences are shown in Fig. 8.
-
_——7— ——

-~ SN \
. TN
Ve 05 : . \
< ! —_— ]
v ] \ . —_— 15715
\ } ) — - [2529]
04 LI — - [35/35]
, ;/ . e s [45/45]
' 1!
0.2 ;7/'

Fig. 8. The deformation shapes of
different stacking sequences

Figure 9, shows the free end deformed
with
various A from 0 to /0. As A increases to 7,

x-coordinates and y-coordinates
15,.... The cantilever angle-ply symmetric
circular curved laminated beam will always
spin to fixedend (x,y) = (0,0) .
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Fig. 9. The free end deformed coordinate of
cantilever circular curved beam
(from 0 to 7/4)

The deformation shapes shown as Fig.
10.

3.3 ANSYS results

Consider a cantilever

angle-ply
symmetric circular curved laminated beam
subjected to a pure bending moment
My=D;/R,, the curve starts from fixed end
a=n/2.
cross-section consist with 2n layers of

carbon fiber T300/5208 [0,,], Material are

a=0 to free end Beams

[+ =« he0 —— =7 — - 15

Fig. 10. The deformation of circular curved
beam (from 0 to n/4) under
various A .

E;=132Gpa, E;=10.8Gpa and v,,=0.24,

G12=5.65Gpa, layer thickness
t=1I1mm, the total thickness is A=2nt and the
width is 6=20mm. Using ANSYS large

deformation static analysis, the various R/

each

versus deformed displacements u is shown
in Table 1.

Table 1. The various R/h versus deformed displacements u.

R/h 2500 1250 1000 500 200 100 10
u 0.999737 0.999987 0.999987 0.999751 0.999751 0.999751 0.999751
Error (%) 0.0263% 0.0013% 0.0013% 0.0249% 0.0249% 0.0249% 0.0249%

Where h/b =1/10.
It shows the consistency of the results
of present study with those by ANSYS.
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4. Conclusions

This paper has presented an analytical
method for obtaining the finite deformation
of 2-D circular curved laminated beam. The
rod axis is either inextensible or extensible.
The curved beam is slender in the sense
that dimension of cross section is much less
than the dimension of radius of curvature.
To derive the analytical method for the
general solutions, one can introduce the
coordinate system defined by the radius of
centroidal axis and the angle of tangent
slope.

The general solutions expressed by
fundamental geometric quantities form a
set of equations having seven unknown
constants. The seven constants can be
directly determined by suitable boundary
conditions. As the radius in terms of the

tangent slope angle is given, the
fundamental geometric quantities can be
calculated to obtain the closed form
solutions of the axial force, shear force,
bending moment, rotation angle, and
displacement fields at any cross-section of
circular curved laminated beams. These
results of the applications indicate that the
closed-form general solutions derived by
the analytical method would be valid for
in-plane thin angle-ply circular curved
Thus the analytical

method would be useful to engineers

laminated beams.

attempting to obtain the exact expressions
for thin angle-ply circular curved laminated
beams in engineering  applications.
Especially, helical spring and clockwork

spring production and process.

References

[1] Green A. E., Naghdi P.M., Wenner M.

L., One the theory of rods I
Derivations from the
three-dimensional  equations, Proc.
Roy. Soc. Lond. A. 337, 1974,
451-483.

[2] Green A. E., Naghdi P.M., Wenner M.

L., Onmne the theory of rods II
Developments by
Proc. Roy. Soc. Lond. A. 337, 1974,
485-507.

[3] Naghdi PM., Finite deformation of

direct approach,

elastic rods and shells, Proc. Iutam
Symp. On Finite Elasticity, Leihigh
Univ., Aug. 1980, 47-103.

[4] Green A. E., Naghdi
Non-isothermal theory of rods, plates
and shells. Int. J. Solids Strucs. 1970,
6, 209-244.

[5] Green A. E., Laws N., Remarks on the
theory of rods, J. Elasticity, 1973, 3,

P M,

vl



34

B8R £+ "H RE-OOF=H

179-184.
[6] Li M., The finite deformation theory
for beam, plate and shell Part I. The
beam

two-dimensional theory,

Computer Methods Appl. Mech. Engrg.

146 (1997) 53-63.
[7] Li M., The finite deformation theory
for beam, plate and shell Part III. The

three dimensional beam theory and FE

formulation.
[8] Oguibe C.N., Webb D. C., Large
deflection analysis of multilayer

cantilever beams subjected to impulse
loading, Computers and Structures, 78,
2000, 537-547.

[9] Attard M. M., Finite strain — beam
theory, International J. Solids and
Structures, 40, 2003, 4563-4584.

[10] Mauget B., Perr¢ P, A large

displacement formulation for

anisotropic constitutive laws, Eur. J.

Mech. A/ Solids 18, 1999, 859-877.

[11] Toi Y., Lee J., Taya M., Finite element

analysis  of  super-elastic  large
deformation  behavior  of shape
memory  alloy  helical  springs,

Computers and Structures 82, 2004,
1685-1693.

[12] Atanackovic T. M., Stability theory of
elastic rods, World Scientific, 1997.
[13] Brush D. O., Almroth B. O., Buckling

of  bars, shells,

McGraw-Hill New York, 1975, 121
[14] Timoshenko S. P., Theory of elastic

stability, McGraw-Hill, 1961,76.
[15]Lin K. C., Huang S. H., Static

plates  and

Closed-form Solutions for In-plane
Thick Curved Beams with Variable
Curvatures, J. Solid Mechanics and
Material 2007, 1,
1026-34.

[16]Lin K. C., Huang S. H., Static

Engineering,

Closed-form Solutions for In-plane
Shear Deformable Curved Beams with
Variable Solid
Mechanics and Material Engineering,
2007, 1, 1362-73.

[17] Lin, K.C. and Hsieh, C.M., The closed

Curvatures, J.

form general solutions of 2-D curved

laminated ~ beams  of  variable

curvatures, — Composite  Structures
Vol.79 (2007 ) , pp.606-618.

[18]Lin C. W., Finite Deformation of 2-D
Thin circular curved beams, Hsiuping
Journal, Vol. 19 (2009 ), pp.203-216.

[19] Herakovich C. T., Mechanics of
Fibrous Composites, John Wiley &

Sons, 1998.

vl





