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A Nonlinear programming method for 
time-optimal control of an omni-directional 

mobile robot 

Shi-Min Wang, Chia-Ju Wu, Jia-Yan Wei 

Abstract 

The time-optimal control problem of a three-wheeled omni-directional mobile robot is 

addressed in this paper. Different from usual cases, in which the Pontryagin’s Minimum 

Principle (PMP) is used, an iterative procedure is proposed to transform the time-optimal 

problem into a nonlinear programming (NLP) one. In the NLP problem, the count of control 

steps is fixed initially and the sampling period is treated as a variable in the optimization 

process. The optimization object is to minimize the sampling period such that it is below a 

specific minimum value, which is set in advance considering the accuracy of discretization. 

To generate initial feasible solutions of the formulated NLP problem, genetic algorithms 

(GAs) are adopted. Since different initial feasible solutions can be generated, the 

optimization process can be started from different points to find the optimal solution. In this 

manner, one can find a time-optimal movement of the omni-directional mobile robot 

between two configurations. To show the feasibility of the proposed method, simulation 

results are included for illustration. 
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可全方位運動機器人之非線性規劃 

最佳時間控制法 

王世民、吳佳儒、魏嘉延 

摘  要 

本論文為探討一部三輪可全方位運動機器人的時間 佳化控制問題，這裏所提出

的方法為 Pontryagin 的 小原則（PMP）。所使用的迭代法為非線性規劃（NLP）方法

的時間 佳化題型，NLP 問題的初始值在控制過程中為常數，而取樣週期在做 佳化

過程中為變數， 佳化的目的是希望取樣週期要比設定的 小值更低，如此一來才可

確保它的準確度。本論文所制定的NLP問題初始可行解可由遺傳演算法(GAs)來求得，

因為初始可行解可求得，所以時間 佳化問題便可進行計算而得到 佳解。在這種模

式下，可全方位運動機器人在空間移動時就可以找到 佳的時間運動方式。本論文所

提出的方法可經由模擬結果來作說明得到驗證。 

 

關鍵詞：時間 佳化控制，非線性規劃，全方位機器人 
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1. Introduction 

In recent years, mobile robots have 

been used widely in many occasions [1]. 

Among several kinds of mobile robot, the 

omni-directional ones have attracted much 

attention since they have the ability to 

move simultaneously and independently in 

translation and rotation [2]. A typical 

application of omni-directional mobile 

robots is the annual international Robocup 

competition [3], in which omni-directional 

mobile robots are used to play soccer-like 

games. 

Many researchers have studied 

omni-directional mobile robots and most 

research has been focused on the 

mechanical design and dynamic analysis. 

Pin and Killough [2] presented the concepts 

for a family of holonomic wheeled 

platforms that feature full 

omni-directionality with simultaneous and 

independent controlled rotational and 

translational capabilities. Jung et al. [4] 

developed an omni-directional mobile 

robot, derived its kinematic and dynamic 

models, and used a fuzzy logic controller 

for the shooting action control. 

Kalmar-Nagy et al. [5] proposed an 

innovative method to generate near-optimal 

trajectories for an omni-directional robot. 

This method provided an efficient method 

for path planning and allowed a large 

number of possible scenarios to be 

explored in real time. William II et al. [6] 

presented a dynamic model for 

omni-directional wheeled mobile robots, 

considering the occurrence of slip between 

the wheels and motion surface. Chen et al. 

[7] presented an off-road omni-directional 

robot, which can run on an uneven road 

and obstacles. They also designed a 

position and velocity control system for the 

robot such that the robot can be 

automatically controlled to run in an 

optional direction and to track an orbit. 

With the same kind of omni-directional 

robot in [7], Chen et al. [8] developed an 

intelligent genetic programming method to 

search for an optimum route leading the 

robot to given destination and avoiding 

obstacles. Liu et al. [9] designed a 

nonlinear controller for an omni-directional 

mobile robot utilizing the so-called 

linearization control method such that 

robust stability and performance can be 

provided. In [10,11], the dynamic model of 

an omni-directional mobile robot is 

developed, and several control strategies 

are discussed based on linear control 

methods while the robot dynamics is 

nonlinear. A resolved-acceleration control 

with PI and PD feedback is developed in 

[10] and PID control, self-tuning PID 

control, and fuzzy control of the 

omni-directional mobile robot are 
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introduced in [11].  

From the robot testing and the 

competition experience of Robocup games, 

it is realized that a time-optimal control 

method for the mobile robots between 

configurations can improve their 

performance significantly. In the past few 

years, the time-optimal problem of mobile 

robots has attracted the attention of several 

researchers [12-14]. However, to the best 

knowledge of the authors, previous 

researchers have not addressed the 

time-optimal control problem of an 

omni-directional mobile robot yet. This 

motivates the research in this paper and a 

NLP method will be proposed to carry out 

the motion maneuver of an 

omni-directional mobile robot between two 

configurations in minimum-time. 
The time-optimal motion-planning 

(TOMP) problem for an omni-directional 

mobile robot is to find the time-optimal 

motion in a smooth flat surface between 

two configurations, where the initial and 

final velocities are zero. Usually, this 

TOMP problem leads to the utilization of 

the PMP [15], in which one needs to solve 

a set of differential equations. Since these 

equations are usually nonlinear and highly 

coupled, one will have two-point boundary 

value problems, which are intractable in 

numerical computation. 

Recently, a NLP method that does not 

utilize the PMP was developed by one of 

the authors of this paper to solve the 

time-optimal control problem of linear 

systems [16]. The basic idea of this method 

is that instead of considering a fixed 

sampling period, the count of control steps 

is fixed initially and the sampling period is 

treated as a variable in the optimization 

process. The optimization object is to 

minimize the sampling period such that it is 

below a specific minimum value, which is 

set in advance considering the accuracy of 

discretization. With this approach, the 

optimization procedure requires only two 

iterations in most linear cases, thereby 

reducing the computation time 

dramatically. 

Extending the concept in [16] to 

nonlinear systems, this paper shows the 

generation of time-optimal motion between 

two configurations for an omni-directional 

mobile robot with three independently 

driven individual wheels. In the beginning, 

dynamical equations of the 

omni-directional mobile robot are 

introduced and an iterative procedure will 

be proposed to transform the time-optimal 

problem into a NLP one. However, since 

the dynamics of the omni-directional robot 

is highly nonlinear, it is a difficult task to 

find a feasible solution for the formulated 

NLP problem. Therefore, a GA-based 

approach is proposed to generate feasible 
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solutions for the formulated NLP problem. 

In this manner, since feasible solutions can 

be obtained easily, the optimization process 

can be started from many different starting 

points to find the optimal solution. 

Simulation examples are given to verify the 

feasibility of the proposed method. 

The rest of this paper is as follows. In 

Section 2, dynamical equations of the 

omni-directional mobile robot are derived. 

Then the TOMP problem between two 

configurations of the omni-directional 

mobile robot is formulated as a NLP one by 

an iterative procedure in Section 3. In 

Section 4, GAs are used to generate initial 

feasible solutions of the NLP problem. 

Problem solution and simulation results are 

shown in Sections 5 and 6, respectively. 

Finally, conclusions and discussion are 

given in Section 7. 

2. Dynamic Equations of the 
Omni-directional Robot 

In this section, it is assumed that the 

omni-directional robot consists of the 

orthogonal-wheel assembly mechanism 

proposed in [2] and a schematic diagram to 

illustrate the motion of the omni-directional 

robot is given as shown in Figure 1. In the 

working space of the robot, a world-frame 

[ , ]T
w wx y  and a moving-frame [ , ]T

m mx y  

are defined as shown in Figure 2. The 

world-frame denotes a frame that 

everything discussed can be referenced and 

the moving-frame is a frame attached to the 

center of the gravity of the robot. The 

transformation between these two frames is 

described by 

cos sin

sin cos
w m

w m

x x

y y

 
 

    
    
    

 

 
 (1)  

where   is the angle between these two 

frames. 

With the transformation in (1) and 

according to the Newton’s Second Law of 

Motion, one can obtain 

1 2 3

1 1
( )

2 2m mM x y D D D       (2)  

1 2

3 3
( )

2 2m mM y x D D     (3)  

1 2 3( )vI D D D L     (4)  

where M  is the mass of the robot, vI  is 

the moment of inertia of the robot, L is the 

distance between any wheel and the center 

of gravity of the robot, and 1,2,3,iD i   

are the driving forces of the wheels. 

In addition, the driving system 

property for each wheel is assumed to be 

given by [17] 

, 1,2,3w i i i iI c ku RD i       (5)  

where c  is the viscous friction factor of 

the wheel, R  is the radius of the wheel, 
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I  is the moment of inertia of the wheel 

around the driving shaft, k  is the driving 

gain factor, and iu  is the driving input 

torque. 

From (1) through (5), and the 

geometrical relationships among variables 

, ,m mx y   , and i , it is found that 

1 2 1 1 2 3( 2 ),m m mx a x a y b u u u       (6)  

1 2 1 1 23 ( ),m m my a y a x b u u       (7)  

3 2 1 2 3( ),a b u u u       (8)  

where 
2

1 3 /(3 2 )a c I MR    (9)  

2 2
2 2 /(3 2 )a MR I MR   (10)  

2 2 2
3 3 /(3 )va cL I L I R    (11)  

2
1 /(3 2 )b kR I MR   (12)  

2 2
2 /(3 )vb kRL I L I R   (13)  

From (6) through (13), and the 

transformation between the world-frame 

and the moving-frame, the dynamical 

equations of the omni-directional robot are 

given as 
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where 

2
4 3 /(3 2 )a I I MR    (15)  

1 3 sin cos      (16)  

2 3 sin cos     (17)  

3 3 cos sin     (18)  

4 3 cos sin      (19)  

3. TOMP between Two 
Configurations 

3.1 Problem Formulation 

The TOMP problem of the 

omni-directional mobile robot between two 

configurations is to find the control inputs 

that will move the system from an initial 

configuration to a desired final 

configuration while minimizing the 

traveling time. With the dynamics in (14) 

through (19), the TOMP problem can be 

formulated as follows: 

PROBLEM 1: For the omni-directional 

mobile robot described in (14) through (19), 

assuming that the initial configuration is 

given as 

0 0 0( (0), (0), (0)) ( , , )w wx y x y   (20)  

( (0), (0), (0)) (0, 0, 0)w wx y     (21)  

determine the control inputs 1( )u t , 2 ( )u t , 
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and 3( )u t  for t t f[0, ]  to minimize 

fJ t  (22)  

subject to 

( ( ), ( ), ( )) ( , , )w f w f f f f fx t y t t x y  (23)  

( ( ), ( ), ( )) (0, 0, 0)w f w f fx t y t t    (24)

and 

,min ,max( )i i iu u t u   for 

[0, ]; 1,2,3ft t i   (25)  

where ( , , )f f fx y   is the desired final 

configuration. 

It is obvious that Problem 1 is a very 

difficult problem due to the nature of the 

nonlinear and coupled relation of the 

omni-directional mobile robot. To cope 

with the difficulty, Problem 1 will be 

formulated and solved in the discrete-time 

domain by numerical methods. By 

extending the concept in [16], it will be 

shown how to determine the time-optimal 

movement of an omni-directional mobile 

robot between configurations. The first step 

is to divide the interval [0, ]ft  into N 

equal time intervals, where N is the number 

of control steps [16]. That is 

1 for 1, 2, ,i i ft t t t N i N       

 (26)  

If the acceleration is assumed to be 

constant for each sub-interval, then one 

obtains 
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where ( ( ), ( ), ( ))w wx i y i i  and 

( ( ), ( ), ( ))w wx i y i i   are used to denote 

( ( ), ( ), ( ))w wx i t y i t i t    and 

( ( ), ( ), ( )),w wx i t y i t i t        

respectively, for notational simplicity. 
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If 1 2 3( (0), (0), (0))u u u  are 

substituted into (14), with the given 

( (0), (0), (0))w wx y   and 

( (0), (0), (0)),w wx y    then the values of 

( (1), (1), (1))w wx y   and 

( (1), (1), (1))w wx y    can be obtained from 

(27) and (28). Applying input torques to 

(14) sequentially and repeatedly using (27) 

and (28), the final configuration of the 

robot can be expressed as functions of 

( (0), (0), (0)),w wx y 

( (0), (0), (0)),w wx y    the input variables 

1 2 3 1 2 3( (0), (0), (0)), , ( ( 1), ( 1), ( 1)),u u u u N u N u N  

 and the sampling period t . This means 

that 
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 (34)  

where 1 1 1( (0), (1), , ( ( 1)),u u u N 1u   

2 2 2( (0), (1), , ( ( 1)),u u u N 2u   and 

3 3 3( (0), (1), , ( ( 1)).u u u N 3u   A 

flowchart to illustrate the derivation of (29) 

through (34) is shown in Figure 3. With (29) 

through (34), Problem 1 is now turned into 

a standard constrained NLP problem as 

follows: 

PROBLEM 2: Given the initial 

configuration in (20) and (21), determine 

the values of 1 1 1(0), (1), , ( 1)u u u N  , 

2 2 2(0), (1), , ( 1)u u u N  ,

3 3 3(0), (1), , ( 1)u u u N  , and t  to 

minimize 

J N t  (35)  

subject to 

0t  (36)  

( ( ), ( ), ( )) ( , , )w w f f fx N y N N x y  (37)  

( ( ), ( ), ( )) (0,0,0)w wx N y N N   (38)  

u u j ui i i,min ,max( )   for 

1,2,3; 0,1, , 1i j N   (39)  

where ( ( ), ( ), ( ))x N y N N  and 
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( ( ), ( ), ( ))x N y N N   are defined in (29) 

through (34). 

3.2 Choice of Control Steps and 

Sampling Period 

Although the TOMP problem of an 

omni-directional mobile robot can be 

formulated as shown in Problem 2, there 

still exist several difficulties to be solved. 

One difficulty is the choice of the value of 

control steps .N  It is obvious that a 

larger value of N  gives more freedom for 

the input variables. However, this also 

means more computation burden for 

Problem 2. For linear system without 

constraints on the input variables, it has 

been shown that the initial choice of N  

must be greater than the dimension of state 

variables [16]. Though no similar rules 

can be followed for nonlinear systems, an 

integer that is large than the dimension of 

state variables will be chosen as an initial 

value of N  in this paper. 

Another difficulty is the choice of 
the sampling period. From the viewpoint 
of discretization accuracy, it is obvious 
that smaller sampling period value will 
result in a more accurate model. 
Therefore, a limitation of the sampling 
period, say limitt , should be chosen. If 

the value of t  obtained in Problem 2 is 
greater than limitt , then a new value of 

control steps will be chosen according to 

new
limit

N t
N

t

 



  40  

4. Initial Feasible Solutions 
Most NLP algorithms usually need an 

initial feasible solution to start the 

optimization process. In Problem 2, an 

initial feasible solution means a set of 

1 1 1(0), (1), , ( 1),u u u N 

2 2 2(0), (1), , ( 1),u u u N 

3 3 3(0), (1), , ( 1),u u u N   and t  

satisfying the constraints in (36) through 

(39). It is obvious that these solutions are 

not easy to be found since the constraints 

are highly nonlinear and coupled. 

Therefore, an approach based on GAs is 

developed to generate initial feasible 

solutions. 

The theoretical basis of GAs is that 

chromosomes (solutions) better suited to 

the environment (evaluation) will have 

greater chance of survival and better 

chance of producing offspring. The 

evolutionary process is based primary on 

the mutation and crossover operators. The 

crossover operator combines the features of 

two parents to form two offspring. The 

mutation operator arbitrarily alters one or 

more genes of a selected chromosome, 

which increases the variability of the 

population. These two operators can further 
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be divided into static and dynamic, where 

static ones do not change over the life of 

the population while dynamic ones are 

functions of time. 

In the evolutionary process to generate 

initial feasible solutions of Problem 2, 

genetic operators such as real number 

encoding, arithmetical crossover and 

non-uniform mutation will be implemented. 

Moreover, dynamic mutation and crossover, 

enlarged sampling space and ranking 

mechanism will also be used to expedite 

the convergence of the evolutionary 

process. 

4.1 Chromosome Representations 

How to encode a solution of the 

problem into a chromosome is a key issue 

for GAs. In this paper, since the parameters 

to be determined are all real, real number 

encoding technique will be used. Once the 

real-code chromosomes are used, the next 

step is to determine the number of genes in 

a chromosome. If the number of control 

steps is N, then the chromosomes will 

contains (3N+1) genes, which denote 

1 1 1(0), (1), , ( 1)u u u N  ,

2 2 2(0), (1), , ( 1)u u u N  ,

3 3 3(0), (1), , ( 1)u u u N  , and t , 

respectively. For a chromosome 

1 2 3 1[ , , ]Nx x x x , one can find that the first 

3N genes are within the ranges 

[ , ],min ,maxu ui i  for 1, 2,3i  , and the lower 

bound of the last gene is greater than zero. 

4.2 Crossover and Mutation 

Operations [18] 

Arithmetical crossover and 

non-uniform mutation will be introduced in 

this section. For two real-coded 

chromosomes 1x  and 2x , the operation 

of arithmetical crossover is defined as 

follows: 

1 1 2(1 )x x x       41  

2 2 1(1 )x x x       42  

where (0,1)  . 

For a given parent x , if a gene kx  

of it is selected for mutation, then the 

resulting offspring will be randomly 

selected from one of the following two 

choices. 

( ) 1
b

U
k k k k

gen
x x x x r

G
        
 

  43  

( ) 1
b

L
k k k k

gen
x x x x r

G
        
 

  44  

where U
kx  and L

kx  are the upper and 

lower bounds of kx ; r  is a random 

number from [0,1] ; gen  is the 

generation number; G  is the maximal 

generation number, and b  is a parameter 
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determining the degree of non-uniformity. 

In addition to arithmetical crossover 

and non-uniform mutation, dynamic 

crossover and mutation probability rates 

will also be used for fast convergence. The 

crossover and mutation rates are defined as 

follows: 

crossover rate exp
gen

G
   
 

  45  

mutation rate exp 1
4

gen

G
    
 

  46  

4.3 Enlarge Sampling Space 

To generate good offspring, a method 

for selection of parents will be necessary. 

For selection methods that are developed 

based on regular sampling space, parents 

are replaced by their offspring soon after 

they give birth. In this manner, some fitter 

chromosomes will be worse than their 

parents. To cope with this problem, the 

selection method in this paper will be 

performed in enlarged sampling space, in 

which both parents and offspring have the 

same chance of competition for survival. 

Moreover, since more random perturbation 

is allowed in enlarged sampling space, high 

crossover and mutation will be allowed in 

the evolutionary process. 

4.4 Ranking Mechanism 

In proportional selection procedure, 

the selection probability of a chromosome 

is proportional to its fitness. This scheme 

exhibits some undesirable properties such 

as a few super chromosomes will dominate 

the process of selection in early generations. 

Moreover, competition among 

chromosomes will be less strong and a 

random search behavior will emerge in 

later generations. Therefore, the ranking 

mechanism is used in this paper to mitigate 

these problems, in which the chromosomes 

are selected proportionally to their ranks 

rather than actual evaluation values. This 

means that the fitness will be an integer 

number from 1 to P , where P  is the 

population size. The best chromosomes 

will have a fitness value equal to P  and 

the worst one will have a fitness value 

equal to 1. 

5. Problem Solution 
The details of the proposed method 

can be summarized as follows: 

Algorithm A：(Generating an initial feasible 

solution) 

Step 1: Define the fitness function. 

Step 2: Determine the population size, 

the crossover rate according to 

(45), and the mutation rate 

according (46). 

Step 3: Produce an initial generation in 

a random way. 
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Step 4: Evaluate the fitness for each 

member of generation. 

Step 5: With the crossover rate in Step 2, 

generate offspring according to 

(41) and (42), in which the 

ranking mechanism is used for 

selection of chromosomes. 

Step 6: With mutation rate in Step 2, 

generate offspring according to 

(43) and (44). 

Step 7: Select the members of the new 

generation from the parents in 

the old generation and the 

offspring in Step 5 and Step 6 

according to their fitness values. 

Step 8: Repeat the procedure in Step 5 

through Step 7 until the number 

of generations reaches a 

prescribed value. 

Algorithm B：(Solution of Problem 2) 

Step 1: Choose a value of limitt  and 

an integer N . 

Step 2: Formulate the TOMP problem 

as a NLP problem as shown in 

Problem 2 with the chosen value 

N . 

Step 3: Use Algorithm A to find an 

initial feasible solution of 

Problem 2. 

Step 4: Use any NLP algorithm to 

determine the minimum value of 

t  in Problem 2 based on the 

initial feasible solution obtained 

in Step 3. 

Step 5: If t  limitt , then choose a 

new value of N  according to 

(40) and go to Step 2. Otherwise, 

continue. 

Step 6: N t  is the minimal traveling 

time. 

6. Simulation Results 
In this simulation example, the 

omni-directional mobile robot is to be 

moved from the initial configuration 

( (0), (0), (0)) (0 m,0 m,0 )w wx y      47  

 

( (0), (0), (0)) (0 m,0 m,0 )x y       48  

to the desired final configuration 

( ( ), ( ), ( )) (1 m,0 m,180 )w wx N y N N  

  49  

( ( ), ( ), ( )) (0 m,0 m,0 )x N y N N     50  

in a time-optimal manner. 

For convenience, the dynamical 

equations used in this example are the same 

as those in [10,11]. This means that the 

parameters of the mobile robot are chosen 

as 9.4 kg,M  0.178 m,L 
211.25 kg m ,vI   20.02108 kg m ,I  

6 25.983 10 kg m /s,c     0.0245 m,R   

and 1k  , respectively. Meanwhile, the 
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constraints on the input torques are 

assumed to be 

110Nm 10Nmu     51  

210Nm 10Nmu     52  

310Nm 10Nmu     53  

In applying Algorithm A to generate 

an initial feasible solution, the fitness 

function is defined as 

2 2

1

1
fitness

e e


  
  54  

where 
2 2 2 2( ( )) ( ( )) ( ( ))f w f w fe x x N y y N N      

  55  

and 
2 2 2 2( ( )) ( ( )) ( ( ))w we x N y N N        56  

In applying GAs, the population size and 

the maximal generation number are chosen 

to be 50 and 100, respectively. During the 

simulation, the MATLAB Optimization 

Toolbox will be used, and the value of 

tlimit  and the initial value of N  are 

chosen to be 0.05 (sec.) and 11, 

respectively. 

Applying Algorithm B with N=11, the 

values of t  and N t   are found to be 

0.0985 (sec.) and 1.0835 (sec.), 

respectively. Since  t t limit , the value 

of N  will be updated according to (40), 

and the new value of N  is chosen to be 

22. Applying Algorithm B with N=22, the 

values of t  and N t   are found to be 

0.0475 (sec.) and 1.0461 (sec.), 

respectively, and the simulation results are 

shown in Figure 4. 

7. Conclusions and Discussion 
This paper presented a novel method 

to solve the TOMP problem of a 

three-wheeled omni-directional mobile 

robot. The first step is to transform the 

problem into a NLP problem by an iterative 

procedure. Then a GA-based method is 

proposed for generation of initial feasible 

solutions since an initial feasible solution is 

usually needed in solving a NLP problem. 

Different from the methods that utilizing 

the PMP, the major advantage of the 

proposed method is that one does not need 

to solve a set of highly nonlinear 

differential equations. 

In the proposed method, one may ask 

why the optimal solution cannot be 

obtained by applying the GAs directly. 

From theoretical point of view, this task is 

possible to be done. However, in practice, 

the major difficulty is that the feasibility of 

the solution is very easy to be violated 

during the evolutionary process. This 

explains why the time-optimal solution 

cannot be obtained by applying the GAs 

directly. 

It can be proved that the solution 

obtained satisfying the Kuhn-Tucker 

condition [19], which is a criterion used to 
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check a local minimum. In addition, from 

the simulation results in Figure 4, one also 

can find that at least one of the four control 

inputs saturated at any time instant. This 

means that the solution is in the form of 

bang-bang control [20]. If a solution does 

not satisfy the Kuhn-Tucker condition or 

not in the form of bang-bang control, then 

one can conclude that the solution is not a 

global minimum. However, since the 

solution obtained meets both criterions 

simultaneously, it will be hard to determine 

whether the solution is globally optimal or 

not. More effort will be needed if one is 

interested in this issue. 
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Figure 1.  A schematic diagram of the omni-directional robot. 

 

 

 

 

 

 

 

 

 

Figure 2.  Definitions of the word-frame  ,
T

w wx y
 and the moving-frame  , .

T

m mx y
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   Given (0), (0), (0)  and (0), (0), (0)w w w wx y x y  

0i 

   1 2 3Apply ( ), ( ), ( )  to (14) to get ( ), ( ), ( )w wu i u i u i x i y i i 

   
     

Find ( 1), ( 1), ( 1)  and ( 1), ( 1), ( 1)

from ( ), ( ), ( ) , ( ), ( ), ( ) , ( ), ( ), ( ) ,

and  by (27) and (28)

w w w w

w w w w w w

x i y i i x i y i i

x i y i i x i y i i x i y i i

t

 

  

     



 

    

1i i 

i N

 

Figure 3.  A flowchart to illustrate the derivation of equations (29) through (34). 
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Figure 4(a).  Plot of ( )wx t  for 22.N   

 
Figure 4(b).  Plot of ( )wy t  for 22.N   
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Figure 4(c).  Plot of ( )t  for 22.N   

 
Figure 4(d).  Plot of 1( )u t  for 22.N   
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Figure 4(e).  Plot of 2( )u t  for 22.N   

 
Figure 4(f).  Plot of 3( )u t  for 22.N   
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