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Chaos Synchronization of Rigid Body
Motions
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Abstract

A new strategy to achieve chaos synchronization of rigid body motions via variable
strength linear balanced feedback control is proposed. The proposed strategy gives the
criteria of chaos synchronization for two identical chaotic rigid body systems. Based on
Lyapunov stability theory and extreme approach, the variable strength gains are derived in
term of the states of the drive system. Furthermore, an adaptive control scheme is proposed
for chaos synchronization when the parametric variations of the response system are
uncertain. The feasibility and effectiveness of the proposed synchronization scheme are
verified via numerical simulations.
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the state variables of a response system
approach eventually to that of a drive

In gyroscopic dynamics, chaotic system. Since Pecora and Carrol [5]
attitude motion of a rigid body has received Proposed the PC method for synchronizing
a great deal of interest among scientists. Infwo identical chaotic systems, various
1981, Leipnik and Newton [1] found methods have been presented for the
double strange attractors in rigid body Synchronization of chaotic systems such as
motion with linear feedback control. The linear feedback control [6], backstepping
system discussed below involves threedesign [7], active control [8], nonlinear
quadratic differential equations, modified control [9] and adaptive control [10-16],
from Euler’s rigid body equations by the €tc. Furthermore, a novel synchronization
addition of linear feedback. In 2004, Chen control, named linear balanced feedback
and Lee [2] presented 2-scroll chaotic control, has been proposed based on linear
attractors in a rigid body system by feedback scheme and extreme approach
applying linear feedback with certain gains [17-18]. The advantage of this method is
and transferred this system into the famousthat the roughly balanced feedback gains of
Lorenz and Chen chaotic systems. In 2007 the system can be obtained analytically and
Chen [3] displayed a 4-scroll chaotic the convergent rate of state error dynamics
attractor in rigid body motions by IS roughly balanced with respect to each
transferring Euler’s rigid body system into State error. In this control scheme, balanced
the corresponding Liu’s chaotic system [4]. feedback gains are time-invariant and
From above studies, it has found that Eulerconservative owing to overestimating the
equations of a rigid body motion not only upper bounds of the trajectory of a chaotic
are an important three-dimensional System in advance. Hence, a modified
autonomous system in classical mechanicscontroller for a chaos synchronization
but also the system exhibits complex System based on state-varying feedback
chaotic behaviors such as famous Lorenzdains scheme have been adopted.

L, Chen and Liu's chaotic systems by In this paper, a new strategy to

appropriate choice the feedback gainsl achieve chaos Synchronization of rlgld
In recent years, Synchronization in bOdy motions via variable Strength linear

1.Introduction

chaotic dynamic System iS a very balanced feedback (VSLBF) control is

interesting problem and has been widelyProposed. In accordance with the result of

studied [1-19]. Synchronization means thatthe analysis, we use the Lyapunov
~
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approach to derive an updating law for the X=ax+d,yz,
estimation of the unknown parameters y=by+d,xz, (2)
when the parameters of the drive system z=cz+d,xy,

are different with those of the response
system. The feasibility and effectiveness of
the proposed chaos synchronization

where
H =diag I,a 1,8 I.c,

schemes are demonstrated via numerical T(o) =[Aw, A0, 4], and

simulations. A =33, 3,=(1,-1,)

2.A rigid body with chaotic A =39,0(ddd 1), J,=(1,-15)
dynamics £=32dd,), 9= (15-1)

The Euler equations for motion of a According to Liu and Chen [4], the
rigid body with principle axes at the center necessary conditions for the system given
of mass are in (2) to exhibit chaos are

g, =(1,-1)aa,+G, d,<0d,>0d;>0 and b<0,c<0,
L ,= (13- 1 )ww, +G,, 1) 0< a<-(b+c). Under such conditions,
L w,=(,-1,)ow, +G;, the five equilibrium points of this system

where 1,1,,1, are the principle are unstable [19]. The five equilibrium
moments of inertia with respect to body points are § (000) , S(X,y.2) ,
axes, w,w,, w, are the angular S, (-X,-V,2) , S(XVy,-2Z) and
velocities about principle axes fixed at the S,(X,~¥,-Z), where X = m

center of mass ands,, G,, G, are three
v s y=./ca/(dd,) , Z=.ab/(dd,).

linear feedback control torque. Let torque _ )
_ Without loss of generality, we
feedback matrix G=H® , where

G =[G, G,, G3]T1 H =diad h;, h,, hy;},

o=[w,w,w]” . By a change of
coordinatesX =T(®) [1], the system (1)

choose I ,=2,,1,=1,1;=3l,
(13>1,>1,), Euler’s egs. are
(=~ g, + (1),
@,= w g+ (! 1),

a, = Www,+ (hy,/1,)aw,. By

state transformatiorncy, = J3x,

in Xx=[x, Y, 2]" is
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state-varying feedback matrix to be
designed later. Systems (3) and (4) are

w, =/3y, z=w,, and

hyy =14,hp, = =100, hyy=-12,, considered as a drive-response system.
Euler’s rigid body system (1) can The dynamics of synchronization
transfer to the corresponding Liu’s errors for rigid body systems can be
chaotic system (2) with the parameters expressed as

d,=-1d,=1d, =1 and a,b,C. €=Be+F(e) (5)

Depending on the particular choice of where e=y—X is the state error vector,
system parameters
dese,

abc¢3 G 16 38or (05-10-4)  _ _ _
, the chaotic system in (2) displays B=A+J-K, F(e)=| dge, |,

2-scroll or 4-scroll chaotic attractors d£e;
shown in Figs. 1 and 2, respectively. 0 dz, dy
.. J:m =|d,z, 0 dyx|. The
3.Synchronization strategy by % o |4 v, dx 0
variable strength linear S ) 7 t_3 o )
aim of synchronization is to make
balanced feedback control o Y
limit_ . |le|FO.
In this section, a systematic design The problem of synchronization

process of synchronization of two identical patyeen the drive and response systems
chaotic rigid body systems is provided via cn pe translated into a problem of how to

VSLBF control. realize the globally  exponentially
Consider a chaotic system in the form giapilization of the system(5). Here,
of assume that the states of the drive and
X =Ax+F(x) (3)  response systems are measurable.
From the linear feedback approach, Construct a Lyapunov function
the controlled response system is given by V(e) =€ Pe 6)
y=Ay+F(y)-K(y-x) (4)

where P is a positive definite diagonal
where x,yOR" are the state vectors, .onstant matrix.

AOR™ is a constant matrix, andf(x) lts derivative along the trajectory of system
is a continuous nonlinear function, (5)is

K =diag{k, k,, ... kK }JOR™ s a V=¢'Pete’Pe=e’(B'P+PB)e
+(FTPe+e'PF)=—-€'Qe
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where QOR™ is a positive definite k =S m,m,,...,m), | ©)
matrix of variablesx. Assume that there r=122,..j,=212..n

exists a positive definite diagonal matrix and

P such asF'Pe=e'PF =0, i.e., in this %7&0, %:O,

system d, =-1d,=1d,=1 choose om om

j=12,..i-1i=12...,n. (10)
. The second step is to minimize the
F'Pe=(dp,+dp,*+d.p)ees =0. In sum of the control gains, i.e.,

fact, most of chaotic systems, including f =Min(k, +...+k ) . This means that

Lorenz, Lu, Chen and four-scroll new _ )
_ i the control gains are roughly equal, i.e.
chaotic systems [2-4] can be described by
balanced.
The third step is to study minima of
function of specific variables. Then, write
down the necessary conditions for

rendering f a relative maximum or

p, = 1p, = 05,p, = 05 such that

this expression.

Chaos synchronization problem is to
design astate-varying feedback gain matrix
K to make the matrixQ a positive

definite function. Then the states of the

, minimum as follows:
response system and drive system are
globally asymptotically synchronized. To o =0, i=12...,n. (11)
implement balanced feedback gains, a om
method minimizing the sum of the By solving (11) corresponding to (10), the
feedback gains is adopted to obtain a set oextreme point (q; ,0,,...q,) is found.
roughly equal control gains. The procedure ] )
for designing control gains is described as4-SynChr0n|Zat|on of two
follows: identical chaotic systems

The first step is to solve the linear Consider the rigid body chaotic

feedback control gains from the positive system as the drive system described as

definite matrixQ . Assume all the principal )
X;=ax, +dy,z,

y.=by, +d;x,z, (12)
z,=cz,+dxy,

minor determinants corresponding to the
symmetric matrix Q as following

TAY :|er| =m >0, The controlled response system is
r=122,..j,i=12...,n. (8) described as

From (8), we obtain
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X,=aX,+d,y,z, =k (X, = %),
y2: by2+d Koy~ kz(Y2 - Y1)'

Z,=cz,+d Xy, ~Ks(z, = ).
(13)

Obviously, to ensure that the origin of
error system (14) is asymptotically stable,
the matrix Q should be positive definite. By
Sylvester's theorem, all principal minors of

Subtracting Eq. (12) from (13), we can Q are strictly positive, i.e., a suitable linear

obtain the error dynamics in the form of
€=Be+F(e) (14)
where
a-k, dz, dy
B={d,z, b-k, dyx |,
dy, dyxx c—k;
dee,
F(e)=|d.eeg, |.
d:ee,
Construct a Lyapunov function
V =e'Pe (15)
where P =diad p, p, P} is a positive

definite matrix.

feedback gain matrix K can be chosen if
the following conditions hold:

k,=a+m /(2p,),
k, =b+(m, +n’)/2m;p,)
=b+(m, + p;NS)/(2mp,)
k, =c+[mm,+(mn,-nn,)? 17
+m,n2]/(2mm,p,) < k;
where m;, m,, m, are positive constant,
ky =c+[mm+(mpN;+p,p,N,N,)*
+m,p;N; 1/(2mm, p;)
N, =n, [/p; =|dsz |,
N, =In, |/p, =[d,y, |,

The derivative of the Lyapunov function N;=|n,|/p, =[d;X |.

along the trajectory of system (14) is
V =¢é'Pet+e’Pé=e' (B"P+PB)e
+(F'Pe+e'PF) =-e'Qe
where FTPe=¢e'PF =0 and
G nn
Q=in g ny|=
n n G
2Ak—ap,  pdz  pdy
pd:z,  2Ak,~b)p,  pdx
pzdzyz p1d1X1 2(k3 -0 P

Choose k,=k; . To obtain balanced

feedback gains, a method minimizing tm;)

sum of the feedback gains is presented as

follows. The minimization of the functional

f =Minfk, +k, +k;} is required. From

(10) Oks L4, 9k; _ o, j=12, we
om, om,

know that the necessary condition

of _, fails to exist. Thus, it may
om,

happen that an extreme value is taken on at
a boundary point, ie.,




46 BVER £+ B KBE—-O=F=R~

m, = 2epym, . £ - 0", k= a+y2(N, +N,)/4,
In case study, a set of parameters of k, =b+ \/ENI/ 4+N,,
the chaotic system is defined by

d,=-1d,=d, =1, a>0b<0,c<0, k3:c+\/§N2/4+N3 (21)

and assumingp, = p,, P, = P; = P, /2. where c'=c+¢&,6 - 0.

. . The above state-varying feedback
By solving the minimization of the

] gains are devised to ensure the global
functional f = Min{k, +k, +k;}, we can

synchronization for rigid body chaotic
obtain linear balanced feedback gains. Ifsystems. Furthermore, the convergent rate
f, =0f, =0, and f ., >0 of state error dynamics can be improved by

. . the additi f gain tuni
fofon > fnzm at a point p(m,m)), e addition of gain tuning paramejper

then at that point has a relative minimum. and Eq. (21) can be rewritten as

With ki =a+V2(N, +N,) 4+ 41,
f(ky Ky ky) =k +k, +k, = f (m,,m,,0") K, =b+V2N,/4+ N, + 41,
18 R
(18) k, =Cc*+v2N,/4+ N, + 4. (22)
the necessary conditionsf, =f, =0
at(m,m,) become 5.Adaptive synchronization
fr, = @MPM, = (pgN; +4m,)(pgN; In Section 3, the varying parameters
+ 4n, 1+ 1602mZN2 ) (L6p,mZm,) = 0 k. are  determined based on
f, = @6t - (4pmiN, N, N, N, ez, [y, Lx, andu
(19) | and the perfect knowledge of the system

+p§N1N2 )2 ) (16pomlmzz) =0
from which there follows

ml* :\/_Z(Nl-" N)p, /2>0 ' parameters are unknown. Therefore, an
m, = (N,N, + 22N, N, 0 adaptive  synchronization scheme s

+2\/_2N3N1)p§ /4>0 (20) presented to identify the uncertain
Thus, the corresponding minimum sum of parameters and assure the robustness of the
control gains is proposed controller.

Mink. +k, +k} = (a+b+c) From (4), (13) and (22), the controlled

v s ie.  response system witbarametric variations
+2(N,+N,)/2+2N,

parametery b ,andc. However, in many

practical situations, some of the system
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can be rewritten as of the Lyapunov function along the
y=Ay+e,f,(9)+ef,(9) trajectory of system (24) is
+e, 1 (§) +FE) - (K +K)F-%) | o
(23) Vi(ss,) =8 Ps+s P$+5, Rs, +s RS,

=S [(B" -K.)"P+P(B" -K)]s
+(F'Ps+s'PF) +2s/G"Ps+2s RS

where Y OR" denotes the state vector of

the response system with uncertain :
P I e Ty * T T .
parameters, €, =a. —a , € =h -b , =5 Qs-25K,_ Ps+2s (G Ps+RS))

(26)
e =cC, —C represent the parameter errors,
¢ h P P where F'Ps=s"PF =0.

a,,b,,c, are estimated parameters, gglect

L=k 00" , f$=[0y,0" , -25'K'Ps+2s](G"Ps+Rs,) =0,
() =[00z]", K, =diage, ¢, e} (27)
and K' =K +u , then

p=diad 1, f, s} . Vi(ss,)=-s'Q’s, (28)

The dynamics of adaptive where Q" has the similar form in Eq.
synchronization errors can be expressed as(16). V, (s;s,) is negative semi-definite

$=(B' -K.)s+Gs, +F(S) (24)  function of the state erros and s,. By

where s=y-x=[s,s,,8,] |, partial stability theory [15] the partial
— * * variables s in Eq. (24) are asymptoticall
s, =[e,.8.6]" , B =A+J-K" , q. (24) ymptotically
R stable abouts=0, the synchronization
J :aF_g;/) is the Jacobian matrix manifold is stable. Hence the drive and
% y=x response systems can be synchronized.
evaluated at 9=X , and From (27), we can obtain the adaptation
G =[f,(9) f, () f(9). faw of the form
Choose the Lyapunov function candidate & =(s = xS) P/,
V,(s;s,) =s'Ps+s[Rs, (25) &, =(S - y,8)p,/T,,
where P =diad p, p, P} and & =(S7 —2,5,)ps /1, (29)

R=diadr,r, r;} are positive definite 6.Numerical results
diagonal constant matrices. The derivative
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The phase portraits of the system (12) k,= 17906, = Ok, = 28246 and
corresponding to the initial states

x (0= 1y, (0)=1,z () =1 are plotted
in Fig. 1 and 2 at(abc)=

m, = 2581in, = 17115]m, =0". Fig.
3 shows that the controller stabilizes the
two-scroll chaotic attractor at an unstable

& 16 39, (05-10-4) respectively.  equilibrium point S, for
Fig. 1 and 2 confirm that this system is 4bcE (5-10-38) and an initial
characterized by two- and four-scroll

. . of X, (O): _10,
chaotic attractors respectively. The _
chaotic system in (12) has five unstable ¥, (0=-172,(0)=15 Fig. 4 shows that
equilibrium ~ points, ie. S, (0,00) the controller stabilizes the four-scroll
S (%Y. S (% —V.3 chaotic attractor at an unstable equilibrium
X ; =X~ Y1, ; :

1( 1_’y1_’21) 2( _1 y_l Zi) p0|nt Sl for (a’ b, C) — (05,_10_4)
So(%.Yu=2) and S,(%,=Vu=Z) s gpg an initial state of
where  %(y, z, 9 (61644435897071)  x (O 3y, (0)=-3 2, (0)=3. To drive
or  X(Y,Z, 9 (63246141422236) the chaotic attractor to a nontrivial fixed

for point of the driving system, the feedback

abc¢ ¥ (G 10- 38or (05-10-4) gains of the response system are designed
, respectively. Since the equilibrium points at the fixed control gains via this proposed
of the chaotic rigid body system are scheme.

unstable, a control problem arises. The numerical simulations for
Accordingly, this study designs a VSLBF synchronization of the two identical chaotic
control scheme to drive the chaotic four-scroll systems are carried out as
attractor to a nontrivial fixed point of the shown in Fig. 5-10. The initial states of the
system. Assuming thatp, = 1p, =05 drive system (12) and response system (13)
and p, = 05 the feedback gainsk, and a€% (0)=1 ¥, 0=17(0)=1 and
parameters m required to drive the X 0=3 Y, 0=-320)=3 ,
chaos to pointS, are found from Egs. respectively. In Fig. 5 and Fig. 7, the
(21) and (20) to be k = 90411 ,

k, = Ok, = 39055 and

variable strength feedback  gains
k, ,k, andk, are roughly equal and vary

with the states of drive system (1&) the
m = 80822, = 5756276m, =0" or  tuning parameters ofy=0 and y =1,
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respectively. The corresponding 9(b)-(d). The numerical results show that
synchronization errorsg, parametersm,, adaptive synchronization is achieved

and norms of controller output in Fig. 5 and successfully when the parameters of the
drive system are different with those of the

response system.

Fig. 7 are shown in Fig. 6 and Fig. 8. The
results show that chaos synchronization is
achieved successfully. With the addition of 7.Conclusion
gain tuning parameter such ag=1, the

proposed variable strength linear balanced In this paper, a new strategy to

. achieve chaos synchronization of rigid
feedback control scheme can achieves a y 9

body motions is proposed by using variable

rapid convergent rates of chaos _
o strength linear balanced feedback control.
synchronization of the two systems shown _
in Fig. 8 The proposed strategy gives a procedure to
The dynamics of adaptive design varla.ble strength linear bal.anc_ed
o . feedback gains for chaos synchronization
synchronization errors, changing

of two four-scroll chaotic systems. In this
method, the feedback gains of the system
are roughly balanced and the convergent
in Fig. 9 and Fig. 10. The initial states of rate of the error dynamics can be improved
the drive and response systems (12) anq)y adopting a suitable gain tuning

(23) are x, OF 2y, @=32(0)=2. parametey; . Additionally, based on the

parameters and the variable strength
feedback gainsk, ,k, andk, are shown

X, O=-6y, (0)=62,0)=4 »  above-mentioned results, an adaptive
respectively, and the initial values of control scheme is proposed for chaos
a ,b,c, are (0-105-45) , ie, synchronization when the parameters of the

3 - ¢ 05-05-05] T drive system are different with those of the
s, = B & & I'= £0505-05] response system. The feasibility and
Fig. 9(a) displays dynamics of adaptive gffectiveness of the synchronization
synchronization errors (s, s,,S;) N schemes have been verified via numerical

system (24) with the parameter estimationsimulations.

update law (29) and variable strength

feedback gainsk, ,k, andk, (22) shown References
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Fig.1 The two-scroll chaotic attractor of a
rigid body system (2) ata =35, b =

-10, c=-3.8.

Fig.2 The four-scroll chaotic attractor of
arigid body system (2) ata =0.5, b
=-10,c=-4.
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Fig.3 Variation of state errors(e,,e,,e;)

and of

output

e = y/(k €))? + (k) + (Kqey)?
of system in (14) over time at, a =
5, b = -10, ¢ = -3.38,
k, =9.0411,k, =0,k; =3.9055
and fixed states S,(X,,¥,,Z,)=
(6.1644,4.3589,7.0711) in system
(12).

norms controller
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Fig.4 Variation of state errors (e ,e,,e;)
and
output
| = (ke + (kpey)? + (kses)?

of system in (14) over time at a =

norms of controller

0.5, b = -10, ¢ = 44,
k, =1.7906,k, = 0,k = 2.8246
and fixed states S,(x,,y,,Z,)=
(6.3246,1.4142,2.2361) in system
(12).
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Fig.5 Variable strength feedback gains
k, (=), k,(—), k,(—=.) versus time
t from Eq. (22) at the tuning
parameters of & =0.
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Fig.6 Dynamics of synchronization

errors e, €,, €; , parameters
m,, m,,and norms of controller

output|Ju

| with respect to Fig. 5.

10 A
B
5 10 15 20 25 30
t
10F
.
|
5 10

15 20 25 30
t

A

Fig.7 Variable strength feedback gains
k, (=), k,(—), k;(—.) versus time

t from Eq. (22) at the tuning
parameters of u#=1.
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Fig.8 Dynamics of synchronization
errors e, e,, €; , parameters
m,, m,, and norms of controller
0utput||u| with respect to Fig. 7.
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Fig.9 Dynamics of adaptive

synchronization errors (s, 5,, 55)
for chaotic systems (12) and (23)
and variations of parameters
of system (23) with
time ¢ at the tuning parameters of
H=5.
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Fig.10 Dynamics of variable strength
feedback gains k,, k,, k; and

parameters
to Fig. 9.

m,, m, with respect
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