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Abstract

This work develops an interactive fuzzy multi-objective linear programming (i-FMOLP)
method for solving the multi-product and multi-time periods aggregate production planning
(APP) decision problem. The imprecise multi-objective APP model designed here seeks to
minimize total production costs and changes in work-force levels. The proposed i-FMOLP
method provides a systematic framework that helps the decision-making process to solve
multi-objective APP problems, enabling a decision maker to interactively modify the imprecise
data and parameters until a set of satisfactory solutions is derived. An industrial case
demonstrates the feasibility of applying the proposed i-FMOLP method to a practical APP
problem.

Keywords: Aggregate Production Planning, Interactive Fuzzy Multi-Objective Linear
Programming, Triangular Fuzzy Numbers, Fuzzy Sets

Tien-Fu Liang, Professor, Department of Industrial Engineering and Management Department, Hsiuping
University of Science and Technology. *Corresponding Author, Email: farmer@mail.hust.edu.tw
Ming-Shun Lee, Assistant Professor, Department of Industrial Engineering and Management Department,
Hsiuping  University of Science and Technology.

Bo-Yan Zhu, Hong-Yu Huang, Min-Ting Liu, Han-Mei Hu, Student, Department of Industrial Englneermg
and Management Department, Hsiuping University of Science and Technology.
Received 30 March 2019; accepted 10 September 2019



74 V2R =TI KBE-ONF=R

BB 2 H AR R TE RS
B e 2R A Sl R R Z

RRG  BEE S KM FAH > B RE - PR

[

A HHIEEAER 3 — B a2 B AR E] (I-FMOLP) J57% > FIDUKREER
W E IR T F e ~ SR 2 BAG R ERE (APP) JRSRRTE - H5% - AU —FF
GEBERAAREES HEE APP 550 > WERIFIERIEERAREN T KEES PR
R ME EAR - HAK o ASCEEE— i-FMOLP J57A 2 28 L2050 - 1F Rt HASE APP ]
L RRE R > WIRARE A gL AFFRE LA EE R 28 > BEEESH
TSH S R Ry 1 - BRfR > AR E SR E IR E R ETEIUNE > BN e
BIEFZ mIf T > s E A E B R -

BRdEEE  RAG/EAEME] - D EhUEN S BRI E] - A - e

FERE RN RE T EEH 28T *@:A{FE Email : farmer@mail.hust.edu.tw
FRE  BPRIERE T EEH AR
KHE ~ ke ~ BRI ~ SR - (B PRHERE T EEH 2584
e HE - 108 423 H 30 H sz HIEHA] : 10849 H 10 H
ul



Application of Interactive Fuzzy Multi-Objective Linear Programming to Aggregate
Production Planning Decisions: Tien-Fu Liang, Ming-Hsun Lee, Bo-Yan Zhu, Hong-Yu
Huang, Min-Ting Liu, Han-Mei Hu 75

1. Introduction

Aggregate production planning (APP) decisions are concerned with determining the
quantity and timing of production for the intermediate future, often from 2 to 18 months ahead.
Since Holt et al. [4] proposed the HMMS rule, APP has attracted considerable attention from
both practitioners and academia. Numerous decision techniques including mathematical
programming models, algorithms and heuristics have also been presented to solve APP
problems [6-7].

When any of these conventional APP techniques are used, however, the goals and related
parameters are generally assumed to be deterministic/crisp and only APP problems with the
single goal of minimizing cost or maximizing profit can be solved. In practical APP decisions,
related model inputs and environmental coefficients are generally fuzzy/imprecise because
information is incomplete and/or unobtainable. Obviously, conventional deterministic decision
techniques cannot solve practical APP problems in fuzzy environments.

In real-life APP decisions, the many functional areas in an organization that yield an input
to the aggregate plan generally have conflicting goals regarding the use of organization’s
resources, and these conflicting goals are required to be solved simultaneously by the decision
maker (DM) in the framework of imprecise aspiration levels [1, 8]. Solutions to multi-objective
APP optimization problems benefit from assessing the imprecision of the DM’s judgments.

This work aims to present a fuzzy mathematical programming approach for solving the
multi-product and multi-time period APP problems with fuzzy goals and fuzzy market demand.
The multi-objective linear programming (MOLP) model designed here attempts to
simultaneously minimize total production costs and total rates of changes in labor levels, and
considers the time value of money for each of the operating cost categories.

2. Problem formulation

2.1. Problem description and notation

The fuzzy multi-objective APP decision problem examined in this work can be described
as follows. Assume that an industrial company manufactures N types of products to fulfill
market demand over the planning horizon T. The goals of this APP decision are to minimize
total production costs and total rate of change in labor levels in relation to inventory levels,
machine capacity, labor levels, warehouse space, and the constraint on available total budget.
The following notation is used.
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e Index sets

n index for product type, forall n=1,2,---,N
t index for planning time period, forall t =1,2,---,T

¢ Objective functions

zZ; total production costs
Z, total rate of change in labor levels

e Decision variables

Qe regular production volume for nth product in period t
Oyt overtime production volume for nth product in period t
St subcontracting volume for nth product in period t

I inventory level for nth product in period t

Bp: backordering volume for nth product in period t

H, workers hired in period ¢t

F; workers laid off in period t

e Parameters

Dyt market demand for nth product in period t

Ay regular production cost per unit for nth product in period 1
iq escalating factor for regular production cost

by, overtime production cost per unit for nth product in period 1
iy escalating factor for overtime production cost

Cn1 subcontracting cost per unit for nth product in period 1
escalating factor for subcontracting cost

d,; inventory carrying cost per unit for nth product in period 1
ig escalating factor for inventory carrying cost

€n1 backordering cost per unit for nth product in period 1

i, escalating factor for backordering cost

k, cost to hire one worker in period 1

my cost to layoff one worker in period 1

if escalating factor for hire and layoff cost

L hours of labor per unit of nth product in period t

Tnt hours of machine usage per unit of nth product in period t
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VUt warehouse spaces per unit of nth product in period ¢t
W, max maximum labor levels available in period t

M, nax maximum machine capacity available in period t
Vi max maximum warehouse space available in period t
Z  available total budget

2.2. Fuzzy multi-objective linear programming model
2.2.1. Objective functions
e Minimize total production costs

N T
Min Zl = Z Z[anl Qnt(l + ia)t + Enl Ont(l + ib)t + 6nlSnt(l + ic)r + dﬂ?:l‘rnt(l + id)t

n=1t=1

T
+ énl Bnt(l + ial)t] + Z(’QLHt + ﬁlFt}(l + if)t
t=1

1)
e Minimize total rate of change in labor levels
T
Min z, = Z(Ht +F,)
t=1 2
2.2.2. Constraints
e Constraints on carrying inventory
‘rnt—l - Bnt—l j: Qnt + Ont + Snt - ‘rnt + Bnt
= D,y Vn,Vt (3)

e Constraints on labor levels

N
Z I!nt—l(Qnt—l"_Ont—l) + Ht - Ft

n=1

N
= Z Ent(Qnt—’_Ont) vt
n=1 (4)

vl
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N
D 1t (Que0pe)
n=1 -
=W, Vit (5)

e Constraints on machine capacity

N

Z rnt(Qnt—’_Ont) = ﬁt max vt
n=1 (6)

e Constraints on warehouse space

N
Z Vnelnt
n=1
= Vimax vt (7)

e Constraint on total budget

zZ =Z 8)

e Non-negativity constraints on decision variables

Qnt) OnerSner Ines Bpe, Hp, Fe 20 W, VE 9

3. Solution Methodology

3.1. Treatment of the fuzzy constraints

This work assumes the DM to have already adopted the triangular fuzzy number to
represent the imprecise parameters in the fuzzy MOLP model formulated above. Recalling Eq.
(4) from the original fuzzy MOLP model, consider the market demand, D, is a triangular
fuzzy number with the most and least possible values. In the process of defuzzification, this
work applies the weighted average technique to convert D,, into a crisp number. If the
minimum acceptable membership level, «, is given, the corresponding crisp expression of
Constraints (4) can be presented as follows.

"nt—l - Bnt—l + Qnt + Ont + Snt - "nt + Bnt

_ P
o want, at WZD??%, at WBDgt, « vVt (10)

where, wy; +w, +ws =1, w;, wp and ws represent the weights of the most
pessimistic, most likely and most optimistic values of the fuzzy market demand, respectively.

@
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Similarly, the corresponding auxiliary crisp expressions of Constraints (6) and (7) can be
presented as follows.

N
— P
Z znt(Qnt—’_Ont) - Wlmf;; max, + Wszyf:??nax, a + WBVVtOmaL a vt
n=1 (12)

N

Z Tt (Qne+0ne)

n=1

ZwlMp

t max, + Ws Mgr?nax a + WSMtornax, @ vt (12)

3.2. Strategy for solving the imprecise objective functions

The objective functions have triangular possibility distributions because the cost/time
coefficients are always imprecise with triangular distributions. The strategy developed here for
solving this imprecise objective function is to simultaneously minimize the most possible goal
value, z7', maximize the possibility of obtaining lower goal value, (z* —z}), and minimize
the risk of obtaining higher goal value, (2§ —z7*) [5]. The resulted three new objective
functions of imprecise objective function (1) can be formulated as follows.

3 — m
MinZ;, =z

N T
DD 1A 0+ 10 + B 0w (1 + ) + iSue(1+ 1
n=1t=1
+ dnlfnt(l + id)t + erﬁBnt (1 + lF'e)t]

T
+ Z[k;”Ht(l + i)+ mPE (L4 )]
t=1

(13)

—_ m P
Max Z;, = z{" — z;

N

T
= Z [(a’TTI - a’?‘pll)Qnt(l + ia)t + (b:ﬁ - bgl)ont (1 + ib)t
n=1t=1
+ (C:lnl B gl)snf(l +1)° + (dyy — Ay DI (1 +i0)° + (eni — €51)Bre (1
T

+ig)f] + Z[(k;” — kD)H (1 + i)t + (P —m))Fy (1 + i)f]

t=1

(14)
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MinZ;3 =z — z{"
N T

= > D [0 — @ (1+ 10 + (b — )0 (1 + 1)+ (€34
n=1 t=1
— n)Sne(L + 1)+ (dyy — i) lne(1 +12)" + (eqy — ) Bpe (1

Fi) T+ D 10 — KPH L+ 0" + (mf = mP)F(1+ i3,)']
t=1
(15)

3.2. Fuzzy multi-objective linear programming model

3.3.1. Phase I: the minimum operator approach

In phase |, the original fuzzy MOLP problem can be solved using the fuzzy
decision-making concept of Bellman and Zadeh [2] and Zimmermann [8]. The linear
membership functions are specified for representing fuzzy goals involved, and the minimum
operator is adopted to aggregate all fuzzy sets. By introducing the auxiliary variable L™, the
fuzzy MOLP problem can be converted into an equivalent ordinary single-goal LP model, as
follows.

Max IV
oIS _
st. MW= 32—
Z11 ~ 41
() < ngs
L) < h
NIS _
7° -z
0= IM =1
Eqgs. (4). (7). (8). (10)-(15) (16)

3.3.2. Phase II: the weighted average operator approach

In phase Il, the initial solution obtained in Model (16) is improved by adding the lower
bound of satisfaction degrees for each fuzzy objective function, L4(g=1,2,...,K) as a constraint;

@
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and the compensatory weighted average operator is then used to aggregate all fuzzy sets. By
introducing the auxiliary variable L®, the fuzzy MOLP problem can be converted into an
ordinary LP model, as follows.

Max L® = Ay Ly + dppLis+ AsLys+ 4oLy

NS _ -
I =11 =
s.t. Lll = Lll = ﬂ
-1 -1
-y — = E5
I -12 " -12
Ly = L = 35 __xB
-12 T -12
_;\-‘35'_,13
! -13 -
Ly = L= N5__75
=13 =13
_NIS _
I < < 2T
? = &1 = _NIS__PIS
=7 =

;LH—I_ 2112—1_ 2113—1_ z:Lz =1

0<L® <1
Egs. (4). (7). (8). (10)-(15) (17)
4. Implementation

4.1. Data description

Daya Technologies Corporation was used as a case study to demonstrate the practicality of
the proposed methodology. According to the preliminary production-marketing information,
Tables 1 to 3 summarize the market demand, operating cost/time coefficients, related capacities,
and warehouse space data used in the Daya case. Notably, the market demand, machine
capacity and available labor levels are fuzzy numbers with triangular distributions. Other
relevant data are as follows.

(1) Initial carrying inventory in period 1 is 400 units of product 1 and 200 units of product 2.
The end inventory in period 4 is 300 units of product 1 and 200 units of product 2. The
initial backordering volume in period 1 and the end backordering volume in period 4 for
two products are zero.

(2) Initial labor level is 300 man-hours. The costs associated with hiring and layoffs are $10

and $2.5 per worker per hour, respectively.

vl




82

V2R =TI KBE-ONF=R

(3) The expected escalating factor for each of the operating cost categories is fixed to 5% in
each period. The minimum acceptable membership level is specified to 0.5 for each fuzzy
parameter. The available total budget is $400,000.

Table 1. Fuzzy market demand data

Item Period
1 (May) 2 (June) 3 (July) 4 (August)
D, | (1,000, 900, 1,080) |(3,000, 2,750, 3,200)(5,000, 4,600, 5,300)|(2,000, 1,850, 2,100)
D,, (1,000, 900, 1080) (500, 450, 540) |(3,000, 2,750, 3,200)|(2,500, 2,300, 2,650)
Table 2. Related unit cost/time coefficients data (in units of US dollars)
a b é d é
Product | ¢ ity (s/unit) (s/unit) (s/unit) (st
1 (20, 17,22) | (30,26,33) | (25,22,27) | (0.30,0.27,0.32) | (40, 35, 44)
2 (10, 8, 11) (15,12,17) | (12,10,13) | (0.15,0.13,0.16) | (20, 16, 23)
Table 3. Maximum labor level, machine capacity and warehouse space data
Period W, ax (Man-hours) M, ,,.<(machine-hours) Vi max (ft?)
1 (300, 275, 320) (400, 360, 430) 10,000
2 (300, 275, 320) (500, 450, 540) 10,000
3 (300, 275, 320) (600, 540, 650) 10,000
4 (300, 275, 320) (500, 450, 540) 10,000

4.2. Solution procedure for the Daya case

In phase 1, the fuzzy MOLP model for the APP decision is first formulated according to
Egs. (1) to (9). The equivalent ordinary LP model for solving the APP problem for the Daya
case can be formulated according to Egs. (16) and (17). LINGO software is used to run this
ordinary crisp LP models. Table 4 lists initial and improved APP plans for the Daya case.

Table 4. Optimal APP plan for the Daya case

— Initial solutions (phase I) Improved solutions (phase I1)
L 0.5595 0.7485
7 (9) (354,764.3, 302,160.11, (335,144.7, 282,416.13,
386,938.45) 367,663.72)
z, (man-hours) 562.75 325.39

S
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4.3. Computational analysis and comparisons

The comparisons listed in Table 4 shows that the interaction of trade-offs and conflicts
among dependent three objective functions. Analytical results obtained by implementing Daya
case indicate that the proposed approach satisfies the requirement for the practical application
since it attempts to simultaneously minimize the total product costs and total rates of changes in
work-force level. Moreover, the proposed approach yields an efficient solution. The proposed
two-phase fuzzy programming can overcome the disadvantage of using the minimum operator
by adding phase | satisfaction degrees to phase Il as a constraint, and the compensatory
weighted average operator is employed for to obtain DM satisfaction degree. Finally, the fuzzy
multi-objective APP model designed here considers the time value of money of related
operating cost categories. The value of total production costs is impacted significantly by the
monetary interest and, thus, a DM must consider the time value of money for each cost
category when solving the real-life APP problems.

5. Conclusions

This work aims to develop a fuzzy mathematical programming approach for solving the
fuzzy multi-objective APP problems with multiple products and multi-time periods. The main
contribution of this work lies in presenting a fuzzy mathematical programming methodology to
multi-objective APP decisions, and provides a systematic decision-making framework that
facilitates a DM to interactively adjust the search direction until the preferred efficient solution
is obtained.
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