利用電子束微影技術完成奈米尺寸圖案

羅世嵩 1 黃俊達 1 游信強 2 朱育宏 3 柯富祥 4

1大葉大學電機工程學系

彰化縣大村鄉山腳路 112 號

2國立交通大學電子研究所

新竹市大學路 1001 號

3國立清華大學電子研究所

新竹市光復路二段 101 號

4國家奈米元件實驗室

新竹市大學路 1001-1 號

摘要

本研究主要以微影系統來定義出奈米等級的圖案。利用電子束阻劑應用於電子束微影上,並且以黃光製程製造出小於 60 奈米的線寬。使用電子束微影技術很輕易的便能製作出 100 nm 以下的結構,能將電子元件之線寬微縮至 60 nm 以下。本研究對電子束光阻在微影製程、蝕刻等特性做製程方面的探討並比較不同線寬之效應。

關鍵詞:電子束微影,奈米,電子束阻劑

Implementing a Nano-Scale Pattern by the Electron-Beam Micro-lithography Technique

SHICH-SONG LUO¹, JUN-DAR HWANG¹, HSIN-CHIANG YOU², YU-HUNG CHU³ and FU-SHIANG KO⁴

¹Department of Electrical Engineering, Da-Yeh University

112 Shan-Jiau Rd., Da-Tsuen, Changhua, Taiwan

²Department of Electronic Engineering, National Chiao-Tung University

1001 Ta-Hsueh Rd., Hsinchu, Taiwan

³Department of Electronic Engineering, National Tsing-Hua University

101, Sec. 2, Kuang-Fu Rd., Hsinchu, Taiwan

⁴National Nano Device Laboratory

1001-1 Ta-Hsueh Rd., Hsinchu, Taiwan

ABSTRACT

A nano-scale pattern has been defined by a micro-lithography technique. The resistance of an electron beam, NEB, is applied to electron-beam lithography, by which a 40 nm line-width structure was successfully fabricated. By using the electron-beam lithography technique, one can easily fabricate a 100 nm structure and reduce the line width of an electron device to below 60 nm. In this

大葉學報 第十三卷 第一期 民國九十三年

study, the characteristics of NEB resistance employed in micro-lithography and etching processes are investigated. In addition, the responses of different line widths have been compared.

Key Word: electron-beam lithography, nano, electron-beam resistance

一、前言

隨著半導體技術的進步,電子元件的發展朝向尺寸不斷 的縮小,元件反應速度更快,使得元件的尺寸進入了深次微 米的領域內。在進入奈米級元件的世代,對於極超大型積體 電路(ultra large scale integrated, ULSI)的應用來說,最主 要的關鍵在於元件的積集化。爲了要增加封裝密度、元件操 作速度及減少功率消耗,元件尺寸持續的縮小,是必然的。 要如何突破光學微影製程極限,一直是各大廠商研發部門的 首要目標。由 ITRS 2001 所發表的的技術藍圖 (roadmap) 報告中指出光學微影製程在2001年後即將面臨兩大挑戰: 第一、如何克服光學微影的物理上限制;第二、需要研發一 種全新的後光學時代(post-optical lithography)微影技術以 及將此新的技術導入量產製程上。不論未來微影製程技術如 何發展,在技術上都必須克服下列四個關鍵技術 [5]:1. 曝 光機台設備的改進,2. 光阻材料及製程設備的研發,3. 光 罩製作、光罩製作機台與光罩材質的改進,4. 關鍵尺寸 (critical dimension, CD) 量測設備、光罩圖案對準的控制 以及缺陷檢驗技術的改善;這些都是在發展下一代微影技術 時,必須注意到的環節。

依目前國內外的 IC 技術而言,在進入次 100 奈米世代,已無適當的光源可以用,因會造成相當的繞射。故目前尙無90 奈米以下的 IC 圖案被發表,而電子束微影是公認的進入次 100 奈米世代最好的曝光工具,因不會有繞射現象。但使用電子束微影,並不可以使用傳統的光阻劑,因爲電子束並不是一種光源,而必須選擇適當的電子束阻劑。而本論文就是使用電子束微影並選擇適當的電子束阻劑來作出 40 奈米的閘極圖形。

二、製程實驗研究

以整體來說,進行微影製程時所需具備的器材除了有光源、光罩及光阻劑之外,還需要有用來顯影的顯影液(developer)。而微影的基本製程也就是由光阻劑塗覆(coating)、曝光(exposure)及顯影(development)三大步驟所構成的,但是爲了加強圖案傳遞的精確性(accuracy)與可靠性,整個微影製程就還需要去水烘烤(dehydration

bake)、塗底(priming)、軟烤(softbake)和硬烤(hardbake)等步驟,使整個複雜性跟著增加。一般的微影製程步驟如圖 1 [2, 4, 6]。

而製作奈米線寬圖案,需藉由先進的微影製程,此研究採用的微影製程寫電子束微影製程。雖然電子束微影系統已經開始大量研究於微小元件的製作[7],但隨著解析度需求的上升,往往使得所需的光阻厚度變薄,所以對於極小之圖形定義通常伴隨著超薄的光阻層,但是在此薄的光阻層條件下,其抗蝕刻能力往往不足,以致於造成過蝕刻現象產生,造成圖形失真[1,3]。由於電子束阻劑的抗蝕刻能力往往令人詬病,爲了克服上述之問題,我們嘗試將光阻劑與有高度抗蝕刻能力的碳奈米粒子團做混和,稱爲電子束阻劑修飾法,藉由阻劑修飾,可以得到高解析度、小線寬以及高抗蝕刻能力之阻劑。在微影製程之中,未曝到光的聚合物經顯影和硬烤之後,必須能夠增加抵擋電漿蝕刻(plasma etching)的能力。而我們利用奈米粒子團去修飾電子束組劑。發現了加入奈米粒子團後圖案的對比度、蝕刻抵擋能力及熱穩定性

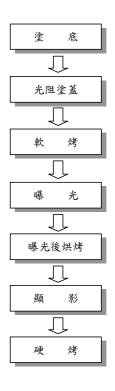


圖 1. 微影製程步驟

等方面都有增進。利用奈米粒子的優點與光阻劑做結合,研 究阻劑修飾對阻劑的特性增益,如降低電子束曝光劑量、增 進阻劑抗蝕刻能力以及更高的線寬極限等。

選擇奈米粒子的原因有三點: 1. 奈米粒子有非常小的 體積,對小線寬曝光時並不會造成影響。2. 奈米粒子可以 均勻溶解在有機溶劑中。3. 奈米粒子與光阻劑同屬碳化物,所以加入奈米粒子在阻劑中,在微影製程時,並不會對原有元件製造過程中造成影響。

三、結果與討論

實驗結果發現到加入奈米粒子會塡補光阻劑中的自由體積,電子束在進行曝光時,被奈米碳粒子團散射,增加電子東阻劑中感光物質被電子束感光的機會,進而降低電子束的曝光劑量。由此可見經修飾後的阻劑,能以較低的劑量曝出相同的圖形與更小的線寬。圖 2(a)是一般傳統製程中,未經奈米粒子團,在顯影後造成阻劑倒塌,與蝕刻轉移圖案

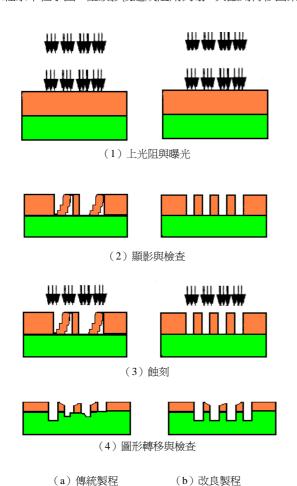


圖 2. 傳統與改良製程,蝕刻圖案的比較

的變形,而圖 2 (b) 經修奈米粒子團飾後阻劑增加高的解析度、高的抗蝕刻能力,有更好的圖形轉移能力。因此,對於電子束背向散射問題有較好的改善。圖 3 是經電子束曝光顯影後的 SEM (scanning electron microscopy) 圖形。圖 3 (a) 顯示了未經修飾的電子束阻劑,在 40nm 線寬時,低劑量條件下,有顯影後崩塌的情形。圖 3 (b) 顯示了在 40nm線寬高劑量時,線寬有變大的趨勢,表示未經修飾的電子束阻劑無法曝出 40nm 的線寬,其解析度不足。圖 3 (c) 為加入奈米粒子修飾後曝出 40nm 的線寬,其增加了光阻的解析度。

四、結論

傳統的光學微影無法使用在次 100 奈米的電子元件上。故欲突破目前的 0.13 微米的 IC 製程,只有依靠沒有繞射現象的電子束微影搭配適當的電子束阻劑。電子束在曝光的過程中,主要都爲穿透阻劑的機制,光阻中的感光物質,經過修飾後的阻劑,因爲含有奈米碳粒子團,當電子束打到奈米碳粒子團時,造成奈米粒子團的散射,使得一個個的奈

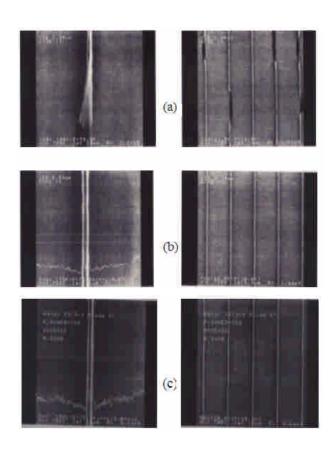


圖 3. 未經電子束阻劑修飾(a)低劑量,(b)高劑量,(c) 經奈米粒子修飾後的 SEM 圖

大葉學報 第十三卷 第一期 民國九十三年

米碳粒子團,就像一個電子束源,增加光阻劑對電子束感光的機會,繼而降低電子束曝光劑量,進而降低電子束之背向散射問題,對電子束微影製程中,有明顯的貢獻。本論文突破了90奈米的技術,在加入奈米粒子團後成功的製造出40奈米的閘極圖形,相信對我國的IC 製造技術在進入奈米世代有很大的幫助。

參考文獻

- 許兼貴(民90),深紫外光光罩抗反射技術及次100奈 米世代電子東直寫阻劑特性研究,國立清華大學碩士論 文。
- 莊達人(民85), VLSI 製造技術, 三版, 頁 236-238, 高立圖書有限公司, 台北。

- 陳力俊主編(民 89),微電子材料與製程,頁 286-289 中國材料科學學會,新竹。
- 4. 張俊彥、鄭晃忠(民87),積體電路製程及設備技術手冊,頁78-79,中華民國產業科技發展協進會,台北。
- 施錫龍(民 85),電子東晶圓步進系統簡介,電子月刊,
 2(2),頁 21-23。
- 6. 龍文安(民 87),積體電路微影製程,頁 14-15,高立 圖書有限公司出版,台北。
- Coburn, J. W. and H. F. Winters (1979) Plasma etching a discussion of mechanisms. *Journal of Vacuum Society Technology*, 16(2), 391-394.

收件:92.07.10 修正:92.10.06 接受:92.11.10