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Circular and Circle Trapezoid Graphs

YAW-LING LIN

Department Computer Science and Information Engineering, Providence University
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ABSTRACT

Along with the direction that generalizes interval graphs and permutation graphs to trapezoid
graphs, researchers are now trying to generaize the class known as trapezoid graphs. A circle
trapezoid is the region in a circle that lies between two non-crossing chords; thus, circle trapezoid
graphs are the intersecting graphs of circle trapezoids within acircle. 1t should be noted that circle
trapezoid graphs properly contain trapezoid graphs, circle graphs and circular-arc graphs as
subclasses. Circle trapezoid graphs should not be confused with circular trapezoid graphs. A
circular trapezoid is the region within two parallel circles that lies between two non-crossing
segments; circular trapezoid graphs are the intersecting graphs of circular trapezoids between two
paralel circles.

In this paper, the author presents results on two proper super classes of trapezoid graphs,
including circle trapezoid graphs and circular trapezoid graphs. It is shown that circle trapezoid
graphs and circular trapezoid graphs are two distinct classes of graphs. Furthermore, it is shown that
the maximum weighted independent set on circular trapezoid graphs can be found in O(nloglog n)
time; whereas, the minimum weighted independent dominating set of circular trapezoid graphs can be
found in O(n’log n) time.

Key Words: circle trapezoid graphs, circular trapezoid graphs, classification of graphs, independent
set, independent dominating set
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. INTRODUCTION

The intersection graph of a collection of trapezoids with
corner points lying on two parallel linesis called the trapezoid
graph [4, 6].
properly contain both interval graphs and permutation graphs.
Trapezoid graphs are not necessary chorda since C, is a
trapezoid graph; however, they are weakly chordal [5]. Recall
that a graph G is weakly chordal if neither G nor G contains

Note that trapezoid graphs are perfect and

a chordless cycle of length > 5.  Dagan, Golumbic, and Pinter
[6] show that the channel routing problem is equivalent to the
coloring problems on trapezoid graphs and present an O(ny)
algorithm to solve it where y is the chromatic number of the
trapezoid graph.

The fastest known agorithm for recognition of trapezoid
graph is given by Maand Spinrad in [17], where they show that
interval dimension 2 problem and trapezoid graphs recognition
both can be solved in O(n?) time. That is, we can take the
complement of the input graph, G, and use the transitive
orientation technique (in O(n?) time) [18] to obtain a poset P
and then tests whether P has interval dimension 2 in another
on® time.
cocomparability graph, to avoid verifying the transitivity of
6, which takes O(w(n)) time, their algorithm needs to check
the representation model in, again, O(n? time. Habib and
Méhring [10] also give an O(n®) time algorithm to recognize a
trapezoid graph based on the 2-d
Independently, using the vertex splitting technique, Cheah and
Corneil [2] aso developed an O(n®) time agorithm for
recognizing trapezoid graphs by graph theoretical approach.

Trapezoid graphs are perfect since they are
cocomparability graphs. Thus the optimization problems
including maximum independent set, clique, clique cover, and
chromatic number of trapezoid graphs can all be solved in
polynomial time by the ellipsoid method for perfect graphs[9].
Based on the geometric representation of trapezoid graphs by
boxes in the plane, Felsner, Muller and Wernisch [7] design
O(n log n) time agorithms for chromatic number, weighted
independent set, clique cover and maximum weighted clique
for trapezoid graphs; the time can be improved to O(n log log

Since the given graph might not be a

interval  order.
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n) if the representations are sorted. It shall be noted that these
results are also independently found by Chang [1]. Chen and
Wang [3] show an agorithm for finding depth-first spanning
trees on trapezoid graphs in O(n) time. For the dominating
sets problem and its variants in trapezoid graphs[12, 13, 19].
Along with the direction that generalizes interval graphs
and permutation graphs to (subclasses of) trapezoid graphs,
researchers are now trying to generalize the class of trapezoid
graphs.
mtrapezoid graphs that are the intersection graphs of

For example, Flotow [8] introduces the class of

m-trapezoids, where an m-trapezoid is given by m+1 intervals
on m+1 paralel lines. Recal that the k-th power of a graph G
= (V,E), denoted G, is the graph with the same vertex while
two vertices are adjacent iff there exists a path of length at most
k connecting them.  Flotow shows that if G¥ is an mrtrapezoid
graph then G**! is also an m-trapezoid graph.  Lin [14] show
that determining whether a given graph is a k-th power graph
for any fixed k > 1 is NP-compl ete.

Felsner et a. [7] generalizes their agorithms to
m-trapezoid graphs (where they called it k-trapezoid graphs,)
and give O(n logt! n) time algorithms for chromatic number,
welighted independent set, clique cover and maximum weighted
clique for k-trapezoid graphs. They also propose a new class
of graphs caled circle trapezoid graphs, aso known as
circular strips graphs, that properly contains trapezoid graphs,
circle graphs and circular-arc graphs as subclasses, they
propose an O(n?) time algorithm for weighted independent set
and an O(n? log n) time algorithm for weighted clique problem
for circle trapezoid graphs, using their agorithms for trapezoid
graphs as subroutines. Note that a circle trapezoid is the
region in a circle that lies between two non-crossing chords,
and the circle trapezoid graphs are the intersection graphs of
circle trapezoids in a circle (Figure 1(a)). Just like circular
permutation graphs [16] shal not be confused with circle
graphs, circle trapezoid graphs shall not be confused with
circular trapezoid graphs, defined by Kratsch, Kloks and
Miiller [11].
circles (paralel to each other, in the 3D space) that lies
between two non-crossing segments (on the cylinder surface,

Here a circular trapezoid is the region in two

connecting two endpointsin each circle, see Figure 1(b).)
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Fig. 1. Circletrapezoid graphs, circular trapezoid graphs,
and circular d-trapezoid graphs

It follows that the circular trapezoid graphs are the
intersection graphs of circular trapezoids between two paralléel
circles. They also extend circular trapezoid graphsintod > 2
paralel circles; the generalized classes of graphs is so called
circular d-trapezoid graphs (Figure 1(c)). Kratsch, Kloks and
Miuller [11] show that polynomia time agorithms for
computing the component number vectors and the maximum
component order vectors for measuring the ‘vulnerability’ of
these graphs.

In summary, circular d-trapezoid graphs generalizes
d-trapezoid graphs, but circular d-trapezoid graphs do not
Note that d-trapezoid
graphs are still cocomparability graphs, but circular d-trapezoid
graphs and circle trapezoid graphs are not subclasses of
cocomparability graphs.

generalize circle trapezoid graphs.

Further, it is still not known whether
we can efficiently recognize circle trapezoid graphs, (d >
2)-trapezoid graphs, or circular (d > 2)-trapezoid graphs. It
seems that research has been directed towards using the
specific topological or geometric structure of these generalized
trapezoid graphs to solve more intractable optimization
problems in larger classes of graphs. Further, finding
recognition agorithms on these variants of generalized
trapezoid graphs will still be a challenge to the researchers.
Some of the problems may have been partly answered [7, 11];
however, there may still be room for improvement, e.g., the
weighted independent set and weighted clique problem for
circle trapezoid graphs.

Most importantly, many optimization problems that can
be efficiently solved in trapezoid graphs [3, 7, 12, 19] are till
quite open to the researchers.  Especidly, little is known about
how to efficiently solve any optimization problem for circular
(d > 2)-trapezoid graphs, and not much is known about
problems on circle trapezoid graphs.

In this paper,
superclasses of trapezoid graphs including circle trapezoid
graphs and circular trapezoid graphs. The paper is organized

the author presents results on two

asfollows. In Section 2, we show that circle trapezoid graphs
and circular trapezoid graphs are two distinct classes of graphs;
actually, we discover that circular trapezoid graphs do not

generalize circle trapezoid graphs. The second part of this

paper concerns the algorithmic aspects of circular trapezoid
graphs.
independent set on circular trapezoid graphs can be found in
O(n?log log n) time.  We show in Section 4 that the minimum
weighted independent dominating set of circular trapezoid

In Section 3, we show that the maximum weighted

graphs can be found in O(n? log n) time.

1. CIRCLE TRAPEZOID GRAPHSAND
CIRCULAR TRAPEZOID GRAPHS
To show that circle trapezoid graphs and circular
trapezoid graphs are two distinct superclasses of trapezoid
graphs, we first show that there are circle graphs that are not
circular trapezoid graphs.
Theorem 1 The graph G shown in Figure 2 is a circle

In particular, we will show

trapezoid graph (actually a circle graph), but it is not a
circular trapezoid graph.

Proof. From the model of G shown in Figure 2, it is easily
seen that G is a circle graph (thus a circle trapezoid graph).
Now we show that G is not acircular trapezoid graph.

Suppose that G is a circular trapezoid graph. Note that
the outer six vertices induced a chordless simple cycle of length
six (Cg) in G.  Itisnot hard to verify that these corresponding
six circular trapezoids in the circular trapezoid model must
connect to each other in a fashion as the right hand side figure
in Figure 2; i.e., these circular trapezoids will from a circular
chain of length six in the circular channel. Now consider the
seventh vertex of G (the middle vertex) shown in Figure 2.
The corresponding circular trapezoid must intersect two
opposite circular trapezoids of the circular chain but not
intersecting any of the middle four circular trapezoids.
However, this can not be done because these outer six circular
trapezoids form a continuous circular chain with two opposite
circular trapezoids not intersecting each other; thus, any
continuous curve intersecting two opposite circular trapezoids
must also (at least) intersecting two other middle circular
trapezoids. Actually, it is not hard to generalize the result to a
family of graphs that are circle (trapezoid) graphs but not
circular trapezoid graphs. ]

We use the notation u ~g v to represent u and v are two
When the

adjacent verticesin G, i.e., {u, v} € E(G).

Fig. 2. A circletrapezoid graph with itscircle trapezoid
model
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underlying G is clear, we will drop the subscribe, and just write
u ~ v. Further, given two subset of vertices AB, we
generalize the notation in A ~ B to mean that a ~ b for al
verticesa € A and b € B. To show that there are circular
trapezoid graphs that are not circle trapezoid graphs, and thus
showing that circle trapezoid graphs is distinct from circular
trapezoid graphs, we need the following property of circle
trapezoid graphs (which aso applies to circular trapezoid
graphs aswell):

Lemma 1 (X-shape) Let v,..., Vg be six distinct vertices of a
circle (circular) trapezoid graph G such that their induced
subgraph form a Kz with {vy, V5, Va} ~{V4, V5, vg}. Let S(T)
be the middle trapezoid of the three trapezoids corresponding
to vertices {vq, Vo, Va} ({V4, V5, Vg}) in the (circle, circular)
trapezoid model of G.  Then the upper (lower) interval of Sis
digoint with the upper (lower) interval of T.

Proof. Let t; represent the trapezoid corresponding to the
vertex v, for i e [1..6] in the trapezoid model of G. Note that
The

corresponding circle trapezoids can either be 3 arcs; i.e, there

vertices vy, V, and vz are independent vertices in Kggz.

is no chord intersecting these 3 circle trapezoids at the same
time. Or, these circle trapezoids shall be paralld i.e, thereis
one chord intersecting these 3 circle trapezoids at the same
time, as shown in the right hand part of Figure 3. However, if
these 3 circle trapezoids are 3 arc-trapezoids, then it will be
impossible for the other three independent vertices, namely v,,
Vs, Vg, intersecting all vertices of vy, v, v5. That is, we
conclude that the 3 circle trapezoids ty, t,, t3 (and thus t,, ts, te)
are 3 parald circle trapezoids.

Denote t; || t; if t; does not intersect with t;. Further,
denote t; || t; || t if t;, tj, t are 3 parallel circle trapezoids with
being the middle circle trapezoid. Without loss of generdlity
we assumethat ty || t, || ts and t4 || ts ||ts; Note that t, = Sand ts =
T.

Assume that t, does intersect ts in the lower (upper)
interval as illustrated by the diagram shown in Figure 3.
Since t,, t5 intersect each other on the lower interval, the lower
By the
same reason, the lower interval of tg lies on the right to the
lower interval of t;.

interval of t, lies on the l€eft to the lower interval of ts.

Fig. 3. K33 introducing the “X”-shapein circle (circular)
trapezoid graphs

However, since v; ~ Vg and vz ~ Vg, it implies that t; and
ts, also t; and t,, intersect each other on the upper intervals,
which isimpossiblefor t, || tz and t4|| te.

By symmetry, we reach the same contradiction if we
assume t, and t5 intersect in the upper intervals. That is, both
the upper and lower intervals of T, and T, are digoint to each
other. In other words, they intersect each other by the “X”
shape. ]

Using this “X”-Shape Lemma (or the K33 Lemma) as a
gadget, we are able to design a circular trapezoid graphs which
do not have circle trapezoid representation.  In particular
Theorem 2 The graph G shown in Figure 4 is a circular
trapezoid graph, but it isnot a circle trapezoid graph.

Proof. From the model of G shown in Figure 4, it is easily
seen that G is a circular trapezoid graph. Now we show that
Gisnot acircle trapezoid graph.

Note that the middle six vertices of G, shown in Figure 4,
induce a K33. Denote the top vertices by a, b, c; note that
vertices a, b, ¢ have degree 5.  Denote the bottom vertices by
d, e, f; note that vertices d, e, f have degree 5. Denote the rest
3vertices by X, y, z note that verticesy, z have degree 5 and the
vertex x has degree 6.

Suppose that G is a circle trapezoid graph. By the
X-shape Lemmal, a, b, c are three parallel, independent, circle
trapezoids. Note that the vertex y is adjacent to both vertices
a and b, but not vertex c. It follows that the corresponding
circle trapezoid ¢ can not be the middle circle trapezoid. The
reason is that, if a trapezoid intersecting both end of the 3
parallel trapezoid, it will definitely intersecting the middle one
as well. Further, since z is adjacent to both vertices b and c,
It follows that the corresponding circle

trapezoid a can not be the middle circle trapezoid. Thus we

but not vertex a.

concludethata || b|| c.
djl el f.
However, note that we have a vertex x intersect both

By the same reasoning, we also have:

vertices a and ¢, but not intersect vertex b, which leads us to the

contradiction. Thus we conclude that G cannot be a circle

trapezoid graph. ]
Combining with Theorem 1, we have:

Fig. 4. A circular trapezoid graph and itscircular trapezoid
model
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Corallary 3 Circle trapezoid graphs and circular trapezoid
graphs are two distinct superclasses of trapezoid graphs.

[11. INDEPENDENT SET OF CIRCULAR
TRAPEZOID GRAPHS
The second part of this paper concerns the agorithmic
aspects of circular trapezoid graphs.
show that the maximum weighted independent set on circular

In this section, we will

trapezoid graphs can be found in O(n? log log n) time.

Assume that we are given a set of n circular trapezoids T
={ty, ..
represented by five tuples (a, b, ¢, d, ), with a, b, ¢, d e
{1..2n}, s € {+-}; we will use t.a, t.b, t.c, t.d, t.s to denote
these five values. For the weighted version of the maximum

. t}. The model of each circular trapezoid t € T is

independent set problem, each circular trapezoid t is associated
with a (positive) real weight w(t). Note that (t.a, t.b)
represents the circular arc (interval) of the outer circle in the
circular trapezoid model, clockwise connecting the point t.a to
the point t.b; in the same nation, (t.c, t.d) represents the circular
arc of the inner circle. Note that given two circular arcs s, t,
with one in the outer circle and the other in the inner circle,
there are two different ways of connecting these two arcsinto a
circular trapezoid. Either we can connect sand t clockwise, or
counterclockwise. Thus, we use + or — signs to represent the
connecting ways accordingly.

Given avertex v € V, define the neighbors of v as N(v) =
{u: (uv) e E}; the closed neighbors of v is defined by N[v] =
N(v) U {v}. Assume that we are given a subset | < V that
defines an independent set in the underlying circle trapezoid

model. Itiseasily verify that:

Proposition 1 Given a graph G = (V,E), let subset | < V be the
Let H be
It follows that

maximum independent set of G with a vertex ve |.
the subgraph of G induced by vertices V \ N[V].
I'\{v} isthe maximum independent set of H.
Proof. By contradiction. Assume that there were a larger
weighted independent set | ” in subgraph H. Clearly, | U {v}
will be a larger weighted independent set in G, which is
impossible. ]
Given a circle trapezoid v of the circle trapezoid model,
the subgraph, H, induced by vertices V \ N[v] will be just a
normal trapezoid graph. Note that we can find the maximum
weighted independent set of H in O(n log log n) time [7]. It
follows that we can iterate through al possible candidate vertex
of v; and find the maximum weighted independent set of
circular trapezoid graphs in O(n? log log n) time. The
It follows that
Theorem 4 Finding the maximum weighted independent set in

algorithmis shown in Figure 5.

acircular trapezoid graph can be done in O(n? log log n) time
and O(n) space.

IV.INDEPENDENT DOMINATING SET OF

CIRCULAR TRAPEZOID GRAPHS

A dominating set of agraph G = (V, E) isasubset D of V
such that every vertex not in D is adjacent to at least one vertex
in D. Each vertex v € V can be associated with a (non
The weighted
domination problemis to find a dominating set, D, such that its
weight w(D) = X,cp W(V) is minimized. An independent
dominating set D is a dominating set that no two vertices of D

negative) rea weight, denoted by w(V).

are adjacent in G.  That is, an independent dominating set is a
dominating set as well as an independent set in G.
For finding the minimum independent dominating set in

Algorithm WIS(T)
Input: A set of n circular trapezoids T = {ty, ..

., ta}. Each circular trapezoid t; is represented by five tuples

(a, b, c,d, s),witha, b, c,d e {1..2n}; s € {+, —}. Each circular trapezoid t is associated with a (positive)
real weight w(t).

Output: A subset | < T such that | is the maximum weighted independent set in the intersecting circular
trapezoid graphs defined by T.

Sep 1: For each circle trapezoid v € T, remove every circle trapezoids of N[v] from the circle trapezoid
modedl. The resulting graph will be atrapezoid graph H.

Sep 2: Find the maximum weighted independent set, IS(H), in the trapezoid graph H. The proposed
independent set has aweight: W(V) = W(V) +Xcisy) W(U).

Sep 3: Among all circle trapezoids, find the vertex, v, with the largest extended weight W(V). It follows
that {v}u IS(H) is the maximum weighted independent set.

End of WIS

Fig. 5. Maximum weighted independent set in circular trapezoid graphs
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circular trapezoid graphs, we use the same idea as we have
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