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ABSTRACT 
     With the vigorous development of wireless technology, the life style of human beings has been 

improved with more convenience and comfort.  Bluetooth is a critical technology applied in a 

shorter distance wireless network.  The roles of Bluetooth devices can be divided into three types: 

master, slave, and bridge.  However, the master or bridge nodes become the bottleneck of a data 

traffic flow.  A novel Bluetooth scatternet formation is required to obtain better QoS and lower 

power consumption.  This study presents two novel algorithms.  The first is Bluetree++ for 

increasing scatternet performance.  The second is Bluetree# for increasing scatternet.  The 

advantages of these two schemes are as follows.  (1) A tree structure can be maintained.  (2) No 

master is also a bridge so the load on the master is reduced.  (3) The number of links in a bridge is 

the minimum possible, thus making the overhead in the bridge lighter. 
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摘 要 

  由於無線網路持續地快速成長，人類的生活也隨之變得更方便及舒適，在短距離傳輸的無

線網路世界裡，藍芽是關鍵的技術之一。藍芽裝置的角色可以區分為主動、從動和橋接裝置三

種，然而在網路傳送資料時主動和橋接這兩種裝置是流量的瓶頸點，新的藍芽散射網路結構是

需要以便獲得有較佳的頻寬品質及較低的電源損耗。此篇文章將提出兩種新的演算法，一是為

了提升散射網路傳輸效能所提出的 Bluetree++，另一是提升散射網路的規模所提出的

Bluetree#，這兩種方案的優點如下所述：（1）維持樹的結構，（2）沒有主動橋接裝置，所以
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主動裝置的負擔較少，（3）連接橋接裝置的總數量為最小，所以可使橋接節點造成的負載較

輕。 

關鍵詞：藍芽，無線網路，微網路，散射網路，頻寬品質，Bluetree++，Bluetree# 

 

I. INTRODUCTION 
     Bluetooth is named from Harald Bluetooth, a Viking and 
former King of Denmark who was renowned for his ability to 
help people communicate with others.  Most notably he united 
Denmark and Norway.  Today Bluetooth is a technology that 
unites different types of electronic equipment from various 
manufacturers, enabling them to communicate with each other 
without the need for wires.  Low-power consumption, low-tier 
and low-cost largely account for the success of Bluetooth 
applications [2].  Bluetooth wireless technology is used to 
communicate data and voice between any two nodes located 
beyond the effective communicating distance of a piconet or 
scatternet.  Multiple piconets can co-exist in a common area 
because each piconet uses a different hopping sequence. 
Piconets can also be interconnected via bridge nodes to form a 
scatternet.  Bridge nodes can timeshare between multiple 
piconets, receiving data from one piconet and forwarding it to 
another.  Figure 1 illustrates that a bridge, B1 can act as a 
slave in both piconets (known as a S/S bridge) or a bridge, B2 
can act as a master in one piconet and act as a slave in another 
(known as a M/S bridge).  Too many bridges in the scatternet 
will waste a guard slot and increase the overhead associated 
with bridge switching among the participated piconets, 
increasing the probability of packet loss.  Too many piconets 
in a communicative range will degrade the scatternet 
performance.  Furthermore, unnecessary piconets also 
lengthen the routing path, delaying the transmission of packets 
from source to destination [3]. 
     Few investigations have attempted to solve these issues 
in scatternet formation, including Bluetree [10], Bluenet [8-9] 
and BlueRing [5], but scatternet formation is still an important 
issue.  In 2001, Zaruba et al. introduced “Bluetrees” as a 
 

 
 

Fig. 1. Bluetooth scatternet 

protocol for forming connected scatternets [10].  Although 
Bluetree has a tree format structure, all master nodes except for 
the root nodes act as bridges.  Hence, the master nodes have 
heavy traffic loads.  To solve this problem, Wang et al. [9] in 
2002 proposed a new scatternet formation algorithm, 
“Bluenet.”  Although the performance of Bluenet may be 
better than Bluetree, Bluenet loses the tree structure.  Each 
node in the graph may have multiple predecessors as well as 
multiple successors.  This characteristic may cause a lower 
performance and routing loop existence.  Hence, Bluenet 
appears out of order and many master nodes also act as bridges.  
Lin and Tseng [5] proposed BlueRing in 2003.  No master 
node is a bridge connecting two piconets; thus making it more 
efficient.  Although BlueRing provides an effective 
scheduling scheme for efficient scatternet operation, the 
number devices is limited to less than 37 [6].  Additionally, 
two devices located in adjacent piconets spend more time 
transferring data to each other because of routing in the same 
direction (clockwise).  Summarizing, Bluetree provides a 
structural tree, Bluenet enhances the performance of Bluetree, 
and no master node acts as a bridge in BlueRing.  However, 
these schemes have some disadvantages such as, Bluetree 
performance is lower; Bluenet loses tree formation; BlueRing 
uses fewer devices.  Therefore, this study proposes two novel 
schemes, Bluetree++ and Bluetree# to maintain the tree 
structure, retain good performance and ensure that no master 
node can act as a bridge. 
     The rest of this paper is organized as follows.  Section II 
presents the Bluetree# family.  Section III describes an 
efficient method, Bluetree#.  Section IV presents numerical 
results and a performance comparison with other schemes.  
Section V states the conclusions. 
 

II. BLUETREE# FAMILY 
     Two Bluetooth units cannot exchange information freely 
unless a master-slave relationship has been set up between 
them.  To avoid excessive delays in forming connections 
between potential communication pairs, a scatternet network 
must be formed in advance by collecting and storing the 
necessary routing information [9].  This section introduces a 
family of Bluetree#, three scatternet formation methods, 
including Bluetree, Bluetree++, and Bluetree#.  An exception 
example using BlueRing is also presented because it is similar 
to Bluetree++ when a link between a bridge and a master is 
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broken. 

1. Bluetree 
     In [10], Zaruba et al. present “Bluetrees” as a feasible 
protocol for forming connected scatternets, which has two 
variations, namely, Blueroot Grown Bluetree and Distributed 
Bluetree.  The first protocol starts by designating a node as the 
“root” of the tree to be formed.  This node, called the 
“blueroot,” then acquires its direct, one hop neighbors as 
slaves.  Each slave then pages its unconnected one-hop 
neighbors and attempts to acquire them.  This acquisition 
process continues with each subsequent level of the tree 
expanding by connecting to its immediate, unconnected 
neighbors until the entire tree has been built.  The tree is then 
optimized by limiting each master to a maximum of seven 
slaves.  Any master with more than seven slaves selects one or 
more pairs of slaves and instructs one node in each pair to 
become a master of the other.  The new master is then 
disconnected from the piconet to form its own piconet.  The 
second Bluetrees protocol speeds up scatternet formation by 
selecting several initial roots for the tree formation.  It then 
merges the trees generated by each of the roots.  
     Both protocols assume that each node knows whether it 
is in the blueroot, knows the identifiers of its one-hop 
neighbors, and knows whether those neighbors are already 
connected.  They also assume that two nodes are connected if 
they are within a given physical distance of each other.  In 
both protocols a master may be assigned more than seven 
slaves.  This situation results in creating extra overhead for 
parking and reactivating slaves.  The authors note that in an 
open, interference and obstacle-free environment, if a node has 
more than five neighbors, there are at least two nodes among 
the neighbors that are neighbors themselves.  This observation 
is used to reconfigure the tree so that no master has more than 
five slaves.  The tree branch reconfiguration is carried out 
throughout the network.  However, Zaruba et al. [10] did not 
prove that this process will actually terminate.  The authors 
did not detail how nodes discover each other and how they 
establish links using the existing Bluetooth protocols.  
Basagni et al. [1] proposed modifications to the Bluetree 
protocol that included adding “weights” to each node to help 
select the masters. 
     A tree topology may also result in inefficient routing 
because a message must travel up the tree and then back down 
to reach its destination.  Sun et al. [7] suggested that the 
assumption that each node knows all of its neighbors is 
unrealistic considering the hopping frequency in Bluetooth 
devices.  Based on the Bluetree rules, we can analyze the 
nodes in each layer and acquire simple formulas to calculate 

the master and bridge nodes as well as the total number of 
nodes in a full Bluetree.  To compare the nodes with other 
protocols, s is defined as slave nodes at most in a piconet and 
presented as Bluetree(s).  There is only one node located on 
the top of the tree and it grows as a binary tree when s is three.  
We can calculate the total number of nodes in each role in a full 
Bluetree using the following formulas: 
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where L is longer than one, M presents the number of master 
nodes as Eq.1, B shows the number of bridge nodes that should 
satisfy Eq.2, S indicates the total number of slave nodes, and T 
presents the total number of nodes as Eq.4 in a Bluetree.  

2. Bluetree++ 
     The specification clearly defines one Bluetooth master 
can take at most seven slaves to form a piconet.  However, to 
increase the scatternet communication efficiency, 
BlueTree++(s, b) scheme [4], where s denotes as the number of 
slave nodes per piconet and b represents the number of bridge 
nodes per piconet, is implemented according to the following 
definition. 
1. The first node of the tree is designated as the root. 
2. Each parent node, located in odd layers, has s−1 child nodes 

or s slaves, where 1 ≤ s ≤ 7.  Meanwhile, the parent node 
has at most b−1 subtrees or b bridges, where 0 ≤ b ≤ s. 

3. Each nodes located in even layers has at most one child 
node. 

4. The nodes that are not leaves and located in the odd layers 
are all masters.  However, the other nodes that are not 
leaves and located in even layers are all bridges. 

     Note that each master node has at most 6 child nodes but 
not 7 because a predecessor, a bridge node of the master, is 
included in the piconet.  Each master has (s−1) slave and 
(b−1) bridge linkages located in succeeding layer.  The rooted 
master will have only (s−1) slaves and (b−1) bridge nodes.  
Figure 2 shows a general tree of Bluetree++ based on (s, b) = 
(5, 4).  There are five slaves at most in each piconet.  We 
observed that each piconet of Bluetree++ (s, b) consists of one 
master, at most s slaves, and at most b bridges.  Because we 
limited the bridge play to only the slave/slave role in our 
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algorithm, all master nodes never act as bridges.  Each bridge 
is limited to two links as illustrated in Figures 2 to 4. 
     Figures 3 and 4 illustrate two Bluetree++ (4, 2) and 
Bluetree++ (4, 3) samples, respectively.  There are only 
master nodes in the odd layers.  Each master could have 
successors forming their own subtrees.  Each master node, 
except for the root, has only one predecessor.  Notice that this 
predecessor must be a bridge.  Figure 3 shows that each 
master can have four slaves.  Two of the four slaves in the 
topology will act as bridges to connect with another piconet.  
This scheme is called Bluetree++ (4, 2).  As a result there are 
two bridges and two slaves in each piconet.  Figure 4 reveals 
that each master node takes four slaves.  We observed that 
there are four slaves at most in each piconet.  At most three of 
these slaves will play a bridge role to expand the scatternet.  
Hence, this topology is called Bluetree++ (4, 3). 
 

 
 

Fig. 2. General tree of Bluetree++ (5, 4) 
 

 
 

Fig. 3. A tree of Bluetree++ (4, 2) 
 

 
 

Fig. 4. A tree of Bluetree++ (4, 3) 

3. Bluetree# 
     Each bridge node in the Bluetree++ scheme has only two 
links with two master nodes to form a connection between the 
two different piconets.  This phenomenon could make a higher 
tree, and lengthen the communicating path, especially for two 
leaf nodes located at different sides from root node of the tree.  
The performance will decrease because of the longer path.  To 
overcome the drawback of Bluetree++, we propose a novel 
scheme based on Bluetree++ named Bluetree#.  Bluetree# will 
have more potential to shorten the layers and communicating 
path.  A Bluetree# (s, b, l) tree, where l is the number of links 
in a bridge node, is formed according to the following rules. 
1. The first node of the tree is designated the root. 
2. Each node in the odd layers has s slaves including a parent 

node and s−1 child nodes (1 ≤ s ≤ 7).  The parent node has 
at most (b−1) subtrees (0 ≤ b ≤ s).  Notably each master 
node has at most 6 child nodes but not 7 because a parent 
node of bridge is included in the master node in a piconet. 

3. Each nodes located in the even layers has at most one child 
node. 

4. A child node that functions as a bridge role has (l−1) 
subtrees at most, where l ≥ 2.  Basically the l makes no 
difference with s and b. 

5. The non-leaf nodes are located in odd layers are all masters. 
However, the other non-leaf nodes are located in the even 
layers and are all bridges. 

     For the same reasons as Bluetree++, the rooted master 
will only have at most (s−1) slaves and (b−1) bridge nodes.  
     Figure 5 shows that each master can have three children.  
Two of the three child nodes in the subtree will act as bridges 
as a predecessor of the next bottom subtree.  Each bridge can 
have at most l−1 links to the next bottom subtree.  This 
scheme is called Bluetree# (4, 3, 3).  Obviously, Bluetree# 
will shorten the communicating path and layers. 

4. BlueRing 
     A previous study [5] presented another scatternet 
formation scheme, “BlueRing.”  BlueRing is quite similar to 
Bluetree++ in application.  BlueRing could be regarded as a  
 

 
 

Fig. 5. An example of Bluetree# (4, 3, 3) 
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special case of Bluetree++ (s, 2).  The following rules are 
applied to simplify BlueRing. 
1. The rule of Bluetree++ (s, 2) must be followed, where s is 

larger than one. 
2. The button layer must be an even layer, and its child node 

must be the only node located in the top layer. 
 

III. BLUETREE# ANALYSIS 
     We define a full Bluetree# (s, b, l) as satisfying the four 
conditions listed as follows: 
1. All masters have s salves and b bridges from the slaves. 
2. Each bridge node is connected to l links. 
3. A tree grows top down, layer by layer. 
4. Unless the limit of Bluetooth is specified, 256 piconets exist 

at most in a scatternet and the tree must be symmetrical. 
     Let L be the layers in a full Bluetree# (s, b, l).  If L is 
equal to one or two, the result is as same as Bluetree++.  We 
analyze the other conditions and divide them into two parts.  
Equations 5 to 7 and 8 to 10 describe each condition allocated 
in the odd and even layers to evaluate the extending scale of 
each role for nodes in a full Bluetree #. 
     When L is odd, each role of nodes will be the equations 
as follows. 
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and L is odd. (7) 
 
     As L is even, each role of nodes will be the equations as 
follows 
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where 

s: Max number of slaves in a piconet, 
b: Max number of bridges in a piconet and b ≤ s, 
l: Max linkage number of bridge node, 

L: the layers of full Bluetree#, 
M: Total number of masters in the full Bluetree#, 
B: Total number of S/S bridge nodes in the full Bluetree#, 
S: Total number of slave in the full Bluetree#. 

     Figures 6 and 7 are two examples to illustrate the 
different policies with s, b, and l in a full Bluetree# protocol.  
Both have same number of master and bridge nodes.  There 
are twenty-one master and ten bridge nodes in each full 
Bluetree#.  There are fifty-four slave nodes in Bluetree# (4, 3, 
3) and seventy-five ones in Bluetree# (5, 3, 3). 
     We also observed that the Bluetree# rules could apply to 
Bluetree++.  There are three parameters in Bluetree# named s, 
b, and l.  Two of the three parameters, s and b, are applied to 
Bluetree++.  In our observation, there are only two links to 
both a successor and a predecessor, respectively, for each 
bridge node in the Bluetree++ protocol.  Therefore, Bluetree# 
(s, b, 2) is equal to Bluetree++ (s, b). 
Theorem 1. Bluetree++ (s, b) is the same as Bluetree# (s, b, l) 
when l is two. 
Proven.  As defined in the previous section, l is the number of 
links with a bridge node that acts only in the slave/slave role. 
     When l is 2, one of the two links will act with a 
predecessor master node.  The other one will link with a child 
node in its subtree.  If the two links are linked from its 
predecessor master nodes, and no link is left to connect with its 
 

 
 

Fig. 6. A Bluetree# (4, 3, 3) with six layers full tree 
 
 

 
 

Fig. 7. A Bluetree# (5, 3, 3) with six layers full tree 
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subtree, the tree structure will break off.  Because the 
Bluetree++ topology is also a tree structure, each bridge node 
in Bluetree++ has a link from its predecessor master node 
connected with a master node from its subtree.  These two 
conditions in Bluetree++ (s, b) and Bluetree# (s, b, l) are equal 
and maintain the same tree structure. 
     When l is 3, besides the two basic links that come from 
predecessor and link with its subtree, the left link should make 
connection with a master from another piconet.  This structure 
does not match a basic definition of Bluetree++ when l is 
greater than or equal three.  Hence, we can prove that 
Bluetree++ (s, b) is the same as Bluetree# (s, b, 2).        g 
 

IV. EXPERIMENTAL RESULTS 
     Experimental results based on Bluetree# algorithm will 
be demonstrated in this section.  There are three parameters, 
named s, b, and l.  The s is defined as the maximum number 
of slave nodes in a piconet.  The b indicates the maximum 
number of bridge nodes in a piconet and the l shows the 
maximum number of links for a bridge node.  They are used 
to represent a Bluetree# family tree formation.  We will 
discuss and compare the experimental results in each 
formation. 
     Figure 8 shows the bridge ratio for three formations 
when s is 5, b is 4 and l is 3.  Here, the bridge ratio is defined 
as the number of bridge nodes divided by the total number of 
nodes.  Bluetree# has lowest bridge ratio in the same layer for 
three formations.  The ratio is reduced by 15% more than 
Bluetree and 10% more than Bluetree++.  The bridge nodes of 
Bluetree++ and Bluetree# only use the slave/slave 
configuration with lower traffic than the master/slave 
configuration in Bluetree.  Therefore, Bluetree++ enhances 
the tree based Bluetooth scatternet performance becase of the 
number of bridge links for Bluetree++ is only two when that 
for Bluetree# is l and that for Bluenet is s+1. 
     Furthermore, Figure 9 shows the slave ratio of three 
formations when s is 5, b is 4 and l is 3.  It indicates the  
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Fig. 8. Bridge ratio of three formations 
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Fig. 9. Slave ratio of three formations 
 
scalability of the tree formations.  First of all, we define a 
slave ratio as the number of slave nodes divided by the total 
number of nodes.  Although, Bluetree has a higher slave ratio 
than other formation, the performance is lower than Bluetree#. 
Bluetree# has higher scalability than Bluetree++. 
 

V. CONCLUSIONS 
     A well structured scatternet with the appropriate number 
of piconets and bridges for a specific traffic pattern will 
increase the performance of a Bluetooth network.  This paper 
proposed two efficient methods to form a scatternet for typical 
personal wireless communication applications. The two 
algorithms were applied in a distributed formation for ad hoc 
networking using Bluetooth technology.  Because a smaller 
piconet is created in which fewer bridge nodes are needed, the 
proposed schemes, Bluetree++ and Bluetree# more easily 
conform to the piconet link QoS requirement.  The advantages 
of these schemes are as follows.  (1) A tree structure can be 
maintained.  (2) No master is also a bridge, so the master load 
is reduced.  (3) The number of links in a bridge is the 
minimum possible, thus making the bridge overhead lighter. 
     Because the tree-based topology will cause a bottleneck 
at master nodes, basing the system on a tree-based topology by 
adding simple rules to improve the load problem is an 
interesting issue.  The mobility and join or lost connections 
for each node will be investigated in the future. 
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