

科學與工程技術期刊 第二卷 第三期 民國九十五年

Journal of Science and Engineering Technology, Vol. 2, No. 3, pp. 1-7 (2006)

1

Bluetree#: An Extendable Bluetooth Scatternet Formation

Using Only Slave/Slave Bridges

CHENG-MIN LIN1, JEN-CHENG CHIU, TSU-WEN KO and CHYI-REN DOW
1Department of Computer and Communication Engineering, Nan Kai Institute of Technology

568 Jungjeng Rd., Tsautuen, Nan Tou, Taiwan

Department of Information Engineering and Computer Science, Feng Chia University

100 Wenhwa Rd., Seatwen, Taichung, Taiwan

Email: {lcm, renchen}@ nkc.edu.tw, m9208614@knight.fcu.edu.tw, crdow@fcu.edu.tw

ABSTRACT
 With the vigorous development of wireless technology, the life style of human beings has been

improved with more convenience and comfort. Bluetooth is a critical technology applied in a

shorter distance wireless network. The roles of Bluetooth devices can be divided into three types:

master, slave, and bridge. However, the master or bridge nodes become the bottleneck of a data

traffic flow. A novel Bluetooth scatternet formation is required to obtain better QoS and lower

power consumption. This study presents two novel algorithms. The first is Bluetree++ for

increasing scatternet performance. The second is Bluetree# for increasing scatternet. The

advantages of these two schemes are as follows. (1) A tree structure can be maintained. (2) No

master is also a bridge so the load on the master is reduced. (3) The number of links in a bridge is

the minimum possible, thus making the overhead in the bridge lighter.

Key Words: Bluetooth, wireless networks, piconet, scatternet, QoS, Bluetree++, Bluetree#

Bluetree#：僅用從動橋接裝置之可延展的藍芽散射網路結構

林正敏 1 邱仁成 柯子文 竇其仁
1南開技術學院電腦與通訊工程系

南投縣草屯鎮中正路 568號

逢甲大學資訊工程系

台中市西屯區文華路 100號

摘 要

 由於無線網路持續地快速成長，人類的生活也隨之變得更方便及舒適，在短距離傳輸的無

線網路世界裡，藍芽是關鍵的技術之一。藍芽裝置的角色可以區分為主動、從動和橋接裝置三

種，然而在網路傳送資料時主動和橋接這兩種裝置是流量的瓶頸點，新的藍芽散射網路結構是

需要以便獲得有較佳的頻寬品質及較低的電源損耗。此篇文章將提出兩種新的演算法，一是為

了提升散射網路傳輸效能所提出的 Bluetree++，另一是提升散射網路的規模所提出的

Bluetree#，這兩種方案的優點如下所述：（1）維持樹的結構，（2）沒有主動橋接裝置，所以

Journal of Science and Engineering Technology, Vol. 2, No. 3, 2006

2

主動裝置的負擔較少，（3）連接橋接裝置的總數量為最小，所以可使橋接節點造成的負載較

輕。

關鍵詞：藍芽，無線網路，微網路，散射網路，頻寬品質，Bluetree++，Bluetree#

I. INTRODUCTION
 Bluetooth is named from Harald Bluetooth, a Viking and
former King of Denmark who was renowned for his ability to
help people communicate with others. Most notably he united
Denmark and Norway. Today Bluetooth is a technology that
unites different types of electronic equipment from various
manufacturers, enabling them to communicate with each other
without the need for wires. Low-power consumption, low-tier
and low-cost largely account for the success of Bluetooth
applications [2]. Bluetooth wireless technology is used to
communicate data and voice between any two nodes located
beyond the effective communicating distance of a piconet or
scatternet. Multiple piconets can co-exist in a common area
because each piconet uses a different hopping sequence.
Piconets can also be interconnected via bridge nodes to form a
scatternet. Bridge nodes can timeshare between multiple
piconets, receiving data from one piconet and forwarding it to
another. Figure 1 illustrates that a bridge, B1 can act as a
slave in both piconets (known as a S/S bridge) or a bridge, B2
can act as a master in one piconet and act as a slave in another
(known as a M/S bridge). Too many bridges in the scatternet
will waste a guard slot and increase the overhead associated
with bridge switching among the participated piconets,
increasing the probability of packet loss. Too many piconets
in a communicative range will degrade the scatternet
performance. Furthermore, unnecessary piconets also
lengthen the routing path, delaying the transmission of packets
from source to destination [3].
 Few investigations have attempted to solve these issues
in scatternet formation, including Bluetree [10], Bluenet [8-9]
and BlueRing [5], but scatternet formation is still an important
issue. In 2001, Zaruba et al. introduced “Bluetrees” as a

Fig. 1. Bluetooth scatternet

protocol for forming connected scatternets [10]. Although
Bluetree has a tree format structure, all master nodes except for
the root nodes act as bridges. Hence, the master nodes have
heavy traffic loads. To solve this problem, Wang et al. [9] in
2002 proposed a new scatternet formation algorithm,
“Bluenet.” Although the performance of Bluenet may be
better than Bluetree, Bluenet loses the tree structure. Each
node in the graph may have multiple predecessors as well as
multiple successors. This characteristic may cause a lower
performance and routing loop existence. Hence, Bluenet
appears out of order and many master nodes also act as bridges.
Lin and Tseng [5] proposed BlueRing in 2003. No master
node is a bridge connecting two piconets; thus making it more
efficient. Although BlueRing provides an effective
scheduling scheme for efficient scatternet operation, the
number devices is limited to less than 37 [6]. Additionally,
two devices located in adjacent piconets spend more time
transferring data to each other because of routing in the same
direction (clockwise). Summarizing, Bluetree provides a
structural tree, Bluenet enhances the performance of Bluetree,
and no master node acts as a bridge in BlueRing. However,
these schemes have some disadvantages such as, Bluetree
performance is lower; Bluenet loses tree formation; BlueRing
uses fewer devices. Therefore, this study proposes two novel
schemes, Bluetree++ and Bluetree# to maintain the tree
structure, retain good performance and ensure that no master
node can act as a bridge.
 The rest of this paper is organized as follows. Section II
presents the Bluetree# family. Section III describes an
efficient method, Bluetree#. Section IV presents numerical
results and a performance comparison with other schemes.
Section V states the conclusions.

II. BLUETREE# FAMILY
 Two Bluetooth units cannot exchange information freely
unless a master-slave relationship has been set up between
them. To avoid excessive delays in forming connections
between potential communication pairs, a scatternet network
must be formed in advance by collecting and storing the
necessary routing information [9]. This section introduces a
family of Bluetree#, three scatternet formation methods,
including Bluetree, Bluetree++, and Bluetree#. An exception
example using BlueRing is also presented because it is similar
to Bluetree++ when a link between a bridge and a master is

CHENG-MIN LIN, JEN-CHENG CHIU, TSU-WEN KO and CHYI-REN DOW:

Bluetree#: An Extendable Bluetooth Scatternet Formation Using Only Slave/Slave Bridges

3

broken.

1. Bluetree
 In [10], Zaruba et al. present “Bluetrees” as a feasible
protocol for forming connected scatternets, which has two
variations, namely, Blueroot Grown Bluetree and Distributed
Bluetree. The first protocol starts by designating a node as the
“root” of the tree to be formed. This node, called the
“blueroot,” then acquires its direct, one hop neighbors as
slaves. Each slave then pages its unconnected one-hop
neighbors and attempts to acquire them. This acquisition
process continues with each subsequent level of the tree
expanding by connecting to its immediate, unconnected
neighbors until the entire tree has been built. The tree is then
optimized by limiting each master to a maximum of seven
slaves. Any master with more than seven slaves selects one or
more pairs of slaves and instructs one node in each pair to
become a master of the other. The new master is then
disconnected from the piconet to form its own piconet. The
second Bluetrees protocol speeds up scatternet formation by
selecting several initial roots for the tree formation. It then
merges the trees generated by each of the roots.
 Both protocols assume that each node knows whether it
is in the blueroot, knows the identifiers of its one-hop
neighbors, and knows whether those neighbors are already
connected. They also assume that two nodes are connected if
they are within a given physical distance of each other. In
both protocols a master may be assigned more than seven
slaves. This situation results in creating extra overhead for
parking and reactivating slaves. The authors note that in an
open, interference and obstacle-free environment, if a node has
more than five neighbors, there are at least two nodes among
the neighbors that are neighbors themselves. This observation
is used to reconfigure the tree so that no master has more than
five slaves. The tree branch reconfiguration is carried out
throughout the network. However, Zaruba et al. [10] did not
prove that this process will actually terminate. The authors
did not detail how nodes discover each other and how they
establish links using the existing Bluetooth protocols.
Basagni et al. [1] proposed modifications to the Bluetree
protocol that included adding “weights” to each node to help
select the masters.
 A tree topology may also result in inefficient routing
because a message must travel up the tree and then back down
to reach its destination. Sun et al. [7] suggested that the
assumption that each node knows all of its neighbors is
unrealistic considering the hopping frequency in Bluetooth
devices. Based on the Bluetree rules, we can analyze the
nodes in each layer and acquire simple formulas to calculate

the master and bridge nodes as well as the total number of
nodes in a full Bluetree. To compare the nodes with other
protocols, s is defined as slave nodes at most in a piconet and
presented as Bluetree(s). There is only one node located on
the top of the tree and it grows as a binary tree when s is three.
We can calculate the total number of nodes in each role in a full
Bluetree using the following formulas:

∑=
−

=

2

0

L

n

nsM (1)

1−= MB (2)

1−= LsS (3)

∑
−

=
=

1

0

L

n

nsT (4)

where L is longer than one, M presents the number of master
nodes as Eq.1, B shows the number of bridge nodes that should
satisfy Eq.2, S indicates the total number of slave nodes, and T
presents the total number of nodes as Eq.4 in a Bluetree.

2. Bluetree++
 The specification clearly defines one Bluetooth master
can take at most seven slaves to form a piconet. However, to
increase the scatternet communication efficiency,
BlueTree++(s, b) scheme [4], where s denotes as the number of
slave nodes per piconet and b represents the number of bridge
nodes per piconet, is implemented according to the following
definition.
1. The first node of the tree is designated as the root.
2. Each parent node, located in odd layers, has s−1 child nodes

or s slaves, where 1 ≤ s ≤ 7. Meanwhile, the parent node
has at most b−1 subtrees or b bridges, where 0 ≤ b ≤ s.

3. Each nodes located in even layers has at most one child
node.

4. The nodes that are not leaves and located in the odd layers
are all masters. However, the other nodes that are not
leaves and located in even layers are all bridges.

 Note that each master node has at most 6 child nodes but
not 7 because a predecessor, a bridge node of the master, is
included in the piconet. Each master has (s−1) slave and
(b−1) bridge linkages located in succeeding layer. The rooted
master will have only (s−1) slaves and (b−1) bridge nodes.
Figure 2 shows a general tree of Bluetree++ based on (s, b) =
(5, 4). There are five slaves at most in each piconet. We
observed that each piconet of Bluetree++ (s, b) consists of one
master, at most s slaves, and at most b bridges. Because we
limited the bridge play to only the slave/slave role in our

Journal of Science and Engineering Technology, Vol. 2, No. 3, 2006

4

algorithm, all master nodes never act as bridges. Each bridge
is limited to two links as illustrated in Figures 2 to 4.
 Figures 3 and 4 illustrate two Bluetree++ (4, 2) and
Bluetree++ (4, 3) samples, respectively. There are only
master nodes in the odd layers. Each master could have
successors forming their own subtrees. Each master node,
except for the root, has only one predecessor. Notice that this
predecessor must be a bridge. Figure 3 shows that each
master can have four slaves. Two of the four slaves in the
topology will act as bridges to connect with another piconet.
This scheme is called Bluetree++ (4, 2). As a result there are
two bridges and two slaves in each piconet. Figure 4 reveals
that each master node takes four slaves. We observed that
there are four slaves at most in each piconet. At most three of
these slaves will play a bridge role to expand the scatternet.
Hence, this topology is called Bluetree++ (4, 3).

Fig. 2. General tree of Bluetree++ (5, 4)

Fig. 3. A tree of Bluetree++ (4, 2)

Fig. 4. A tree of Bluetree++ (4, 3)

3. Bluetree#
 Each bridge node in the Bluetree++ scheme has only two
links with two master nodes to form a connection between the
two different piconets. This phenomenon could make a higher
tree, and lengthen the communicating path, especially for two
leaf nodes located at different sides from root node of the tree.
The performance will decrease because of the longer path. To
overcome the drawback of Bluetree++, we propose a novel
scheme based on Bluetree++ named Bluetree#. Bluetree# will
have more potential to shorten the layers and communicating
path. A Bluetree# (s, b, l) tree, where l is the number of links
in a bridge node, is formed according to the following rules.
1. The first node of the tree is designated the root.
2. Each node in the odd layers has s slaves including a parent

node and s−1 child nodes (1 ≤ s ≤ 7). The parent node has
at most (b−1) subtrees (0 ≤ b ≤ s). Notably each master
node has at most 6 child nodes but not 7 because a parent
node of bridge is included in the master node in a piconet.

3. Each nodes located in the even layers has at most one child
node.

4. A child node that functions as a bridge role has (l−1)
subtrees at most, where l ≥ 2. Basically the l makes no
difference with s and b.

5. The non-leaf nodes are located in odd layers are all masters.
However, the other non-leaf nodes are located in the even
layers and are all bridges.

 For the same reasons as Bluetree++, the rooted master
will only have at most (s−1) slaves and (b−1) bridge nodes.
 Figure 5 shows that each master can have three children.
Two of the three child nodes in the subtree will act as bridges
as a predecessor of the next bottom subtree. Each bridge can
have at most l−1 links to the next bottom subtree. This
scheme is called Bluetree# (4, 3, 3). Obviously, Bluetree#
will shorten the communicating path and layers.

4. BlueRing
 A previous study [5] presented another scatternet
formation scheme, “BlueRing.” BlueRing is quite similar to
Bluetree++ in application. BlueRing could be regarded as a

Fig. 5. An example of Bluetree# (4, 3, 3)

CHENG-MIN LIN, JEN-CHENG CHIU, TSU-WEN KO and CHYI-REN DOW:

Bluetree#: An Extendable Bluetooth Scatternet Formation Using Only Slave/Slave Bridges

5

special case of Bluetree++ (s, 2). The following rules are
applied to simplify BlueRing.
1. The rule of Bluetree++ (s, 2) must be followed, where s is

larger than one.
2. The button layer must be an even layer, and its child node

must be the only node located in the top layer.

III. BLUETREE# ANALYSIS
 We define a full Bluetree# (s, b, l) as satisfying the four
conditions listed as follows:
1. All masters have s salves and b bridges from the slaves.
2. Each bridge node is connected to l links.
3. A tree grows top down, layer by layer.
4. Unless the limit of Bluetooth is specified, 256 piconets exist

at most in a scatternet and the tree must be symmetrical.
 Let L be the layers in a full Bluetree# (s, b, l). If L is
equal to one or two, the result is as same as Bluetree++. We
analyze the other conditions and divide them into two parts.
Equations 5 to 7 and 8 to 10 describe each condition allocated
in the odd and even layers to evaluate the extending scale of
each role for nodes in a full Bluetree #.
 When L is odd, each role of nodes will be the equations
as follows.










>−×−+−×−

=

= −−
−

=
∑ 2)1()1()1()1(

11

2
1

2
12

3

0
Llblb

L

M LL
L

i

ii

and L is odd, (5)










>×−

=

=
∑

−

=

− 2)1(

10

2
1

1

1 Llb

L

B
L

i

ii
 and L is odd, (6)










>×−−×−×−

=

=
∑

−

=
22)1()1()1(

10

2
3

0
LBslb

L

S
L

i

ii

and L is odd. (7)

 As L is even, each role of nodes will be the equations as
follows










>−×−

=

=
∑

−

=
3)1()1(

21

2
2

0
Llb

L

M
L

i

ii
 and L is even, (8)










>−×−

=

=
∑

−

=

− 3)1()1(

20

2
2

1

1 Llb

L

B
L

i

ii
 and L is even, (9)





>×−−×
=

=
33)1(
2

LBsM
Ls

S and L is even. (10)

where

s: Max number of slaves in a piconet,
b: Max number of bridges in a piconet and b ≤ s,
l: Max linkage number of bridge node,

L: the layers of full Bluetree#,
M: Total number of masters in the full Bluetree#,
B: Total number of S/S bridge nodes in the full Bluetree#,
S: Total number of slave in the full Bluetree#.

 Figures 6 and 7 are two examples to illustrate the
different policies with s, b, and l in a full Bluetree# protocol.
Both have same number of master and bridge nodes. There
are twenty-one master and ten bridge nodes in each full
Bluetree#. There are fifty-four slave nodes in Bluetree# (4, 3,
3) and seventy-five ones in Bluetree# (5, 3, 3).
 We also observed that the Bluetree# rules could apply to
Bluetree++. There are three parameters in Bluetree# named s,
b, and l. Two of the three parameters, s and b, are applied to
Bluetree++. In our observation, there are only two links to
both a successor and a predecessor, respectively, for each
bridge node in the Bluetree++ protocol. Therefore, Bluetree#
(s, b, 2) is equal to Bluetree++ (s, b).
Theorem 1. Bluetree++ (s, b) is the same as Bluetree# (s, b, l)
when l is two.
Proven. As defined in the previous section, l is the number of
links with a bridge node that acts only in the slave/slave role.
 When l is 2, one of the two links will act with a
predecessor master node. The other one will link with a child
node in its subtree. If the two links are linked from its
predecessor master nodes, and no link is left to connect with its

Fig. 6. A Bluetree# (4, 3, 3) with six layers full tree

Fig. 7. A Bluetree# (5, 3, 3) with six layers full tree

Journal of Science and Engineering Technology, Vol. 2, No. 3, 2006

6

subtree, the tree structure will break off. Because the
Bluetree++ topology is also a tree structure, each bridge node
in Bluetree++ has a link from its predecessor master node
connected with a master node from its subtree. These two
conditions in Bluetree++ (s, b) and Bluetree# (s, b, l) are equal
and maintain the same tree structure.
 When l is 3, besides the two basic links that come from
predecessor and link with its subtree, the left link should make
connection with a master from another piconet. This structure
does not match a basic definition of Bluetree++ when l is
greater than or equal three. Hence, we can prove that
Bluetree++ (s, b) is the same as Bluetree# (s, b, 2). g

IV. EXPERIMENTAL RESULTS
 Experimental results based on Bluetree# algorithm will
be demonstrated in this section. There are three parameters,
named s, b, and l. The s is defined as the maximum number
of slave nodes in a piconet. The b indicates the maximum
number of bridge nodes in a piconet and the l shows the
maximum number of links for a bridge node. They are used
to represent a Bluetree# family tree formation. We will
discuss and compare the experimental results in each
formation.
 Figure 8 shows the bridge ratio for three formations
when s is 5, b is 4 and l is 3. Here, the bridge ratio is defined
as the number of bridge nodes divided by the total number of
nodes. Bluetree# has lowest bridge ratio in the same layer for
three formations. The ratio is reduced by 15% more than
Bluetree and 10% more than Bluetree++. The bridge nodes of
Bluetree++ and Bluetree# only use the slave/slave
configuration with lower traffic than the master/slave
configuration in Bluetree. Therefore, Bluetree++ enhances
the tree based Bluetooth scatternet performance becase of the
number of bridge links for Bluetree++ is only two when that
for Bluetree# is l and that for Bluenet is s+1.
 Furthermore, Figure 9 shows the slave ratio of three
formations when s is 5, b is 4 and l is 3. It indicates the

0.00

5.00

10.00

15.00

20.00

25.00

30.00

2 4 6 8Layers

B
rid

ge
 ra

tio

BT(5)

BT++(5,4)

BT#(5,4,3)

Fig. 8. Bridge ratio of three formations

50.00
55.00
60.00
65.00
70.00
75.00
80.00
85.00
90.00

2 4 6 8layers

Sl
av

e
ra

tio

BT(5)

BT++(5,4)

BT#(5,4,3)

Fig. 9. Slave ratio of three formations

scalability of the tree formations. First of all, we define a
slave ratio as the number of slave nodes divided by the total
number of nodes. Although, Bluetree has a higher slave ratio
than other formation, the performance is lower than Bluetree#.
Bluetree# has higher scalability than Bluetree++.

V. CONCLUSIONS
 A well structured scatternet with the appropriate number
of piconets and bridges for a specific traffic pattern will
increase the performance of a Bluetooth network. This paper
proposed two efficient methods to form a scatternet for typical
personal wireless communication applications. The two
algorithms were applied in a distributed formation for ad hoc
networking using Bluetooth technology. Because a smaller
piconet is created in which fewer bridge nodes are needed, the
proposed schemes, Bluetree++ and Bluetree# more easily
conform to the piconet link QoS requirement. The advantages
of these schemes are as follows. (1) A tree structure can be
maintained. (2) No master is also a bridge, so the master load
is reduced. (3) The number of links in a bridge is the
minimum possible, thus making the bridge overhead lighter.
 Because the tree-based topology will cause a bottleneck
at master nodes, basing the system on a tree-based topology by
adding simple rules to improve the load problem is an
interesting issue. The mobility and join or lost connections
for each node will be investigated in the future.

ACKNOWLEDGEMENT
 The authors would like to thank the National Science
Council of R.O.C. for financially supporting this research under
Contract NSC-93-2213-E-252-005.

REFERENCES
1. Basagni, S., R. Bruno and C. Petrioli (2003) A

performance comparison of scatternet formation protocols
for networks of Bluetooth devices. Proceedings of the First
IEEE International Conference on Pervasive Computing

CHENG-MIN LIN, JEN-CHENG CHIU, TSU-WEN KO and CHYI-REN DOW:

Bluetree#: An Extendable Bluetooth Scatternet Formation Using Only Slave/Slave Bridges

7

and Communications, Dallas, Texas.
2. Bluetooth Special Interest Group (2003) Specification of

the Bluetooth System. version 1.2, http://www.bluetooth.
com.

3. Chang, C. Y., K. P. Shih, S. C. Lee and C. H. Tseng
(2004) Adaptive role switching protocols for improving
scatternet performance in Bluetooth radio networks.
Proceedings of 15th IEEE International Symposium on
Personal, Indoor and Mobile Radio Communications,
Barcelona, Spain.

4. Lin, C. M., C. R. Dow, T. W. Ko, C. M. Chiu and K. L.
Liao (2005) BlueTree++: A novel scatternet formation
scheme. Proceedings of the 23rd IASTED International
Conference on Parallel and Distributed Computing and
Networks, Innsbruck, Austria.

5. Lin, T. Y. and Y. C. Tseng (2003) A new BlueRing
scatternet topology for Bluetooth with its formation,
routing, and maintenance protocol. Wireless
Communications and Mobile Computing, 3(4), 517-537.

6. Salonidis, T., P. Bhagwat, L. Tassiulas and R. LaMaire
(2001) Distributed topology construction of Bluetooth
personal area networks. Proceedings of IEEE INFOCOM,

Anchorage, Alaska.
7. Sun, M. T., C. K. Chang and T. H. Lai (2002) A

self-routing topology for Bluetooth scatternets.
Proceedings of International Symposium on Parallel
Architectures, Algorithms and Networks, Manila,
Philippines.

8. Wang, Z., Z. Haas and R. J. Thomas (2003) Bluenet II -- A
detailed realization of algorithm and performance analysis.
Proceedings of the 36th Hawaii International Conference
on System Science (HICSS-36), Big Island, Hawaii.

9. Wang, Z., R. J. Thomas and Z. Haas (2002) Bluenet -- A
new scatternet formation scheme. Proceedings of the 35th
Hawaii International Conference on System Science
(HICSS-35), Big Island, Hawaii.

10. Zaruba, G. V., S. Basagni and I. Chlamtac (2001) Bluetrees
- Scatternet Formation to Enable Bluetooth-Based Ad Hoc
networks. Proceedings of IEEE International Conference
on Communications (ICC 2001), Helsinki, Finland.

Received: Jan. 24, 2006 Revised: May 9, 2006

Accepted: Jul. 30, 2006

