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ABSTRACT

In this study, the influence on wave propagation of periodic structures having defects is
investigated. Defects are used in periodic structures to study the unique characteristics of wave
propagation in a periodic system. A structural rod model is developed to study the problems of
one-dimensional periodic structures with defects.

A finite element model and a transfer matrix method are developed to study these problems to
predict the performance of the system; moreover, a shape memory alloy (SMA) is used to control the
characteristics of the system. The behaviors of the periodic structure are evaluated at different
length ratios and material properties of the defects. The effects of the SMA when applied at various
temperatures are also discussed. The location and width of stop bands can be changed with different
configurations of the additional defects.
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I. INTRODUCTION

Earlier works about the periodic structures were
presented by Brillouin [2]. The propagation of waves in
periodic structures formed by the assemblages of beams and
plates was investigated by Heckl [3]. Later, Mead and Wilby
[8] considered the effects of the damping of the
multi-supported beam structures. Furthermore, Mead [6, 7]
also presented the outstanding contributions to the study of the
dynamics of periodic structures.

Recently, many smart materials are used to control the
wave propagation of periodic structures.
studied the control of wave propagation in periodic composite
They [10] also
discussed the attenuation and localization of the wave
propagation in periodic rods with SMA insert. The
viscoelastic materials exhibited both viscous and elastic

Ruzzene and Baz [9]

rods with shape memory alloy inserts.

characteristics and the modulus of a viscoelastic material was
usually represented as a complex modulus.

For periodic structures, another approach, the transfer
matrix method, was used to investigate the dynamics for wave
Lin and Mcdaniel [5] were
pioneering in the application of a transfer matrix to the analysis

propagation in many media.
of stiffened plate vibration and periodic structures. Ruzzene
and Baz [11] also used the method of the transfer matrix to
predict pass and stop frequency bands for different proportional
control gains.
characteristics of wave propagation on the periodic stiffened
shell by the finite element method base on the transfer matrix.

Then, Solaroli et al. [12] investigated the

Benaroya [1] investigated the characteristics of the wave
propagation in periodic structures with imperfections.

In this investigation, a combination of finite element
modeling and the transfer matrix method is developed to solve
the dynamics of the wave propagation of the periodic beam
structures with defects. Hence, the finite element model is
utilized to extract the transfer matrix that governs the
propagation of waves along the periodic rod. The effects of

various parameters on the pass and stop bands of a periodic

Y st ﬂﬁjﬂt,}'{ﬁgg A4 i ‘ﬁﬂ‘*’fgf

structure with defects are calculated. The investigation in this

study can provide the based guidelines to design the periodic

structures with defects to obtain more effective filtering

characteristics.

I1. PROBLEM FORMULATION

As shown in Figure 1(a), a general periodic rod structure

without defect is presented and the periodic rod structure with

defect is shown in Figure 1(b).

In this study, a finite element

model is developed to describe the dynamic behaviors of the

periodic system. Material 1 and material 2 of the periodic rod

are assumed pure elastic and isotropic materials and another

smart material - shape memory alloy (SMA) is also used in the

composite rod structure and discussed in this study.

In order

to simplify the problem, the following assumptions must be

mentioned first.

The two parts of the periodic structures and

the defect are subjected to longitudinal strain only.
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(b) with defect

Fig. 1. Geometry diagram of periodic rod
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The dynamics of such one-dimensional periodic systems
are determined using finite element modeling and transfer
matrix method. The potential energy and kinetic energy of the
cell 1, cell 2 and cell 3 are given as follows:

Lol e ) o it 2.3 1
'_E-[o"a X, =1, 2, 1)

1, ¢l Ou; ? i
T, :Eb.[o (pihi)[gj dx, i=1, 2, 3. )

where u; is the longitudinal displacement of the base rod of cell
i

In this study, a standard two nodes and two DOFs rod
element has been used and the axial displacement u; can be
expressed in terms of nodal displacement vector q(t), and shape
function N;(x).

u; = Nj(x)q(t), i=1,2,3 3)
where i denotes the number of the cells.

Then, the potential energy and kinetic energy of cell 1,
cell 2 and cell 3 can be written as:

Celli:
Ui =%{OI(I)}T [KiHa®)}, (4)
Ti :%{O'I(t)}T [Mi{a(®)}, ®)

1= (g Ny N
Where [K;]=[bEih[ — T Hox,
I T
[M;]= [ oo NI [NiJdx

In which [K{] and [M;] are the stiffness and kinetic
matrices of cell 1, cell 2 and cell 3 respectively.

When the periodic section vibrates harmonically, with
angular frequency @, combining equations of cell 1, 2 and 3
yields the dynamic stiffness matrix of the stiffened rod element.
[Kail =[Ki]- @[M;], i=1,2,3. ©)

The dynamics of wave propagation along the periodic
rod structure with defect is determined by evaluating the
propagation constants of the system, which are obtained by
analyzing through the transfer matrix formulation. The

dynamics of the elementary cells is represented in terms of the
dynamic stiffness matrix as follows:

[Kail{Qi}=1{F}, i=1,2,3 )

and, the above relation can be rewritten as:

|:KdiLL KdiLR:HQiL}:{FiL} i=1 2. 3. (8)
Kaire  Kdirr ||Qir Fr)

where Ky, Kaitr, Kgire  and Kgiggr  are the sub-matrices of
Kgi, respectively. F is the vector of generalized forces and Q
is the vector of generalized displacement. The subscripts L
and R denotes the left and right nodes of the cell i.

Then, Egs. (8) can be rearranged to displacements and
forces to yield the following expression for the transfer matrix
of the periodic rod with defect and can be presented as follows:

YR =T T3 T Vi =Ts Vi » ©)

where Yk:[Qi Fi]r denotes the state vector, and m, n

represent the numbers of the entire cells of the periodic system.
Ty is the kth entire cell transfer matrix (cell 1+cell 2), which is
given by

T =TOT@, (10)

Where

-1 -1
0 :|: ~ KaiLrKaiL KaiLr } i=1 2
) 4 e
KairrKdiLrKdiLL — Kdire  — KdirrKdilr

By the same way, the relation of the defect also can be obtained
as follows

1
_{ - Ka3rKgaLL

K_l
— d3LR (12)
1 1
Ka3rrKd3LrKgaLL — KgsrL

- Kg3rrKq3Lr

Impose the following continuity and compatibility at the
beginning of the entire cell,

{Qk ={Qik-1, {Fh=—AFk1.
the relations of the entire cell can be expressed as follows:

Y-nr =9 YL (12)

1 0
where J = .

Then, Egs. (12) can be rewritten to obtain the relations at
left and right of two consecutive entire cell:
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Vg =371 T, Yor =TV k)R - (13)

where 'ITszJ‘l-Ts. Afterwards, dropping the subscripts

“R”, Egs. (13) can be written as a compact form:

Y =Tk - (14)
I11. RESULTS AND DISCUSSIONS
rod of this

considered as a chain of cells according to the transfer matrix
of the single cells. The transfer matrix T, has two

The composite investigation can be

frequency-dependent eigenvalues, A,=¢” and A,=e™*, which
determined the nature of the wave dynamics in the periodic rod
with the defect.

In the above section, x is the propagation constant of the
periodic system. The real part of x represents the decay of the
amplitude of the wave propagation from one cell to the
following cell and the imaginary part of x determines the phase
difference in two adjacent elements. The waves will
propagate along the rod indicating the pass band and if not then
the waves will be attenuated, indicating a stop band. The
wave propagation of the periodic structures is possible within
frequency band where x has only imaginary part and
attenuation occurs for the frequency band that provides a real
part to the propagation constant.

To validate the proposed algorithm and calculations,
comparisons between the present results and the results of
existing models are made first. The numerical results are
compared with those obtained by Ruzzene [9] in Table 1. The
solutions solved by present model are shown to have a good
accuracy.

In this study, the molded plastic is used to be as defects.
The Young’s modulus of the aluminum, steel, and molded
plastic are 70GPa, 210GPa, 4GPa, The
densities of the aluminum, steel, and molded plastic are
2700kg/m®, 7800kg/m®, and 1726kg/m®, respectively. The
density of the SMA is 6500kg/m®.  The effect of the

respectively.

Table 1. Comparisons of the first stop band

Boundaries of Present Reference [9]
first stop band (rad/s) (rad/s)
U 620 ~625
250°C pper
Down 1365 ~1360
Upper 620 ~625
50°C PP
Down 1410 ~1400
Upper 620 ~625
75°C PP
Down 1520 ~1530

temperature on the Nitinol Young’s modulus is shown in Figure
2, as measured experimentally inside a temperature-controlled
chamber (Delta Design, Model 5900).

In Figure 3, the stop bands of the periodic steel and SMA
rod structure with defect are presented. Figure 3(a) and
Figure 3(b) are the real and imaginary part of the propagation
constant of the periodic system with defects. The physical
and geometrical parameters are E;=210GPa, E,=30GPa
(25°C), E5=4GPa, |,=5I,=5cm, and h;=h,=hs=1cm. The first
stop band of the periodic system without and with defects is
110k-527k rad/s and 135-641k rad/s, respectively. But with
defects, a small stop band will occur and the range of the
additional stop bands is 97k-126k rad/s. It is an interesting
point of the additional stop band as a result of the defects and
we can use the characteristics to design a good acoustic wave
filter.

The effects of the length ratios (4 =15/l , where l;=1cm)
on the propagation constants of the steel and SMA periodic
system with a defect are plotted in Figure 4. The physical and
geometrical parameters are E;=210GPa, E,=30GPa (25°C),
E;=4GPa, and I,=5l;. With different length of the defect, the
location and width of stop band will be changed. The width
of the stop band will be smaller with decreasing length of the
defect and the stop band of the system will move forward with
increasing length of the defect.

Finally, the effects of temperatures are discussed in
Figure 5. The propagation constants of steel and SMA
periodic rod with a defect at 25°C, 50°C, and 75°C are plotted
in Figure 5. The physical and geometrical parameters are
E,=210GPa, E5=4GPa, |,=5l;=5cm, and h;=h,=h;=1cm. As
the temperatures increase, the width of first stop band of the
system will decrease and move towards to left. The ranges of
the stop band at 25°C, 50°C, and 75°C are 135k-640k rad/s,
146k-642k rad/s, and 158k-644k rad/s.

Young's Modulus (GPa)

| | | |
30 40 50 60 70 80
temperature-°C

Fig. 2. Experimental evaluations of SMA Young’s modulus
against temperature [10]
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Fig. 4. Effects of length ratios A on propagation constants of
the steel and SMA periodic rod with defect

IV. CONCLUSIONS
The presented examples demonstrate the utility of the
active and passive control capabilities in tuning the width and
location of the pass and stop bands according to the nature of
the external excitation.
observed that we can filter the certain bands of frequencies by
choosing a suitable periodic system. By adding a defect in the

According to the results, it can be

Re(u)

0 200000 400000

frequency (rad/s)

600000 800000

Fig. 5. Propagation constants of steel and SMA periodic rod
with defect at various temperatures

periodic system, the stop band can be changed and filter
different range of the bands of frequencies with various
properties of the defects.

The techniques of the periodic sandwich structures have
significant effects on the wave propagations and for controlling
the flow of vibration and sound radiation to design a quiet and
stable system.
provide the basic guidelines to design periodic structures with

In present study, the investigation hopes to

various defects to achieve certain filtering characteristics.
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