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ABSTRACT 
     In this study, the influence on wave propagation of periodic structures having defects is 
investigated.  Defects are used in periodic structures to study the unique characteristics of wave 
propagation in a periodic system.  A structural rod model is developed to study the problems of 
one-dimensional periodic structures with defects.   
     A finite element model and a transfer matrix method are developed to study these problems to 
predict the performance of the system; moreover, a shape memory alloy (SMA) is used to control the 
characteristics of the system.  The behaviors of the periodic structure are evaluated at different 
length ratios and material properties of the defects.  The effects of the SMA when applied at various 
temperatures are also discussed.  The location and width of stop bands can be changed with different 
configurations of the additional defects.   
Key Words: periodic structure, defect, SMA, stop band 
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摘 要 

  本文研究具缺陷週期結構之波傳特性，利用有限元素法與轉移矩陣法，相互配合分析，對

於週期性含缺陷結構進行波傳特性分析。首先比較完美的週期結構，與含缺陷的週期結構，兩

者之間頻溝變化，接下來改變缺陷之幾何參數、材料參數，觀察系統之頻溝的改變。由於週期

結構裡的形狀記憶合金會隨著溫度的改變而改變它的材料參數，所以本文也針對形狀記憶合金

的特性，改變溫度去探討觀察頻溝的變化。希望藉由本文的分析，控制缺陷的幾何、材料參數、

溫度，可發展出比單純週期結構還要更優越的濾波能力。 

關鍵詞：週期結構，缺陷，形狀記憶合金，停止能帶 

 

I. INTRODUCTION 
     Earlier works about the periodic structures were 
presented by Brillouin [2].  The propagation of waves in 
periodic structures formed by the assemblages of beams and 
plates was investigated by Heckl [3].  Later, Mead and Wilby 
[8] considered the effects of the damping of the 
multi-supported beam structures.  Furthermore, Mead [6, 7] 
also presented the outstanding contributions to the study of the 
dynamics of periodic structures.   
     Recently, many smart materials are used to control the 
wave propagation of periodic structures.  Ruzzene and Baz [9] 
studied the control of wave propagation in periodic composite 
rods with shape memory alloy inserts.  They [10] also 
discussed the attenuation and localization of the wave 
propagation in periodic rods with SMA insert.  The 
viscoelastic materials exhibited both viscous and elastic 
characteristics and the modulus of a viscoelastic material was 
usually represented as a complex modulus.   
     For periodic structures, another approach, the transfer 
matrix method, was used to investigate the dynamics for wave 
propagation in many media.  Lin and Mcdaniel [5] were 
pioneering in the application of a transfer matrix to the analysis 
of stiffened plate vibration and periodic structures.  Ruzzene 
and Baz [11] also used the method of the transfer matrix to 
predict pass and stop frequency bands for different proportional 
control gains.  Then, Solaroli et al. [12] investigated the 
characteristics of wave propagation on the periodic stiffened 
shell by the finite element method base on the transfer matrix.  
Benaroya [1] investigated the characteristics of the wave 
propagation in periodic structures with imperfections.  
     In this investigation, a combination of finite element 
modeling and the transfer matrix method is developed to solve 
the dynamics of the wave propagation of the periodic beam 
structures with defects.  Hence, the finite element model is 
utilized to extract the transfer matrix that governs the 
propagation of waves along the periodic rod.  The effects of 
various parameters on the pass and stop bands of a periodic 

structure with defects are calculated.  The investigation in this 
study can provide the based guidelines to design the periodic 
structures with defects to obtain more effective filtering 
characteristics. 
 

II. PROBLEM FORMULATION 
     As shown in Figure 1(a), a general periodic rod structure 
without defect is presented and the periodic rod structure with 
defect is shown in Figure 1(b).  In this study, a finite element 
model is developed to describe the dynamic behaviors of the 
periodic system.  Material 1 and material 2 of the periodic rod 
are assumed pure elastic and isotropic materials and another 
smart material - shape memory alloy (SMA) is also used in the 
composite rod structure and discussed in this study.  In order 
to simplify the problem, the following assumptions must be 
mentioned first.  The two parts of the periodic structures and 
the defect are subjected to longitudinal strain only. 

 

 
(a) without defect 

 

 
(b) with defect 

 

Fig. 1. Geometry diagram of periodic rod 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

JIA-YI YEH, JIUN-YEU CHEN, CHEN-YANG LIU and CHIH-CHIEH CHANG:  

Control of Wave Propagation in Periodic Structures Having Defects 

                                                        

 

47 

     The dynamics of such one-dimensional periodic systems 
are determined using finite element modeling and transfer 
matrix method.  The potential energy and kinetic energy of the 
cell 1, cell 2 and cell 3 are given as follows: 
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where ui is the longitudinal displacement of the base rod of cell 
i. 
     In this study, a standard two nodes and two DOFs rod 
element has been used and the axial displacement ui can be 
expressed in terms of nodal displacement vector q(t), and shape 
function Ni(x). 
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where i denotes the number of the cells.  
     Then, the potential energy and kinetic energy of cell 1, 
cell 2 and cell 3 can be written as: 
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     In which [Ki] and [Mi] are the stiffness and kinetic 
matrices of cell 1, cell 2 and cell 3 respectively.  
     When the periodic section vibrates harmonically, with 
angular frequency ω, combining equations of cell 1, 2 and 3 
yields the dynamic stiffness matrix of the stiffened rod element. 
 

][][][ 2
iidi MKK ω−= ,      i=1, 2, 3. (6) 

 
     The dynamics of wave propagation along the periodic 
rod structure with defect is determined by evaluating the 
propagation constants of the system, which are obtained by 
analyzing through the transfer matrix formulation.  The 
dynamics of the elementary cells is represented in terms of the 
dynamic stiffness matrix as follows: 

{ } { }iidi FQK =][ ,         i=1, 2, 3 (7) 

 
and, the above relation can be rewritten as: 
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where KdiLL, KdiLR, KdiRL  and KdiRR  are the sub-matrices of 
Kdi, respectively.  F is the vector of generalized forces and Q 
is the vector of generalized displacement.  The subscripts L 
and R denotes the left and right nodes of the cell i. 
     Then, Eqs. (8) can be rearranged to displacements and 
forces to yield the following expression for the transfer matrix 
of the periodic rod with defect and can be presented as follows:  
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where [ ]Tiik FQY =  denotes the state vector, and m, n 

represent the numbers of the entire cells of the periodic system.  
Tk is the kth entire cell transfer matrix (cell 1+cell 2), which is 
given by  
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By the same way, the relation of the defect also can be obtained 
as follows 
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     Impose the following continuity and compatibility at the 
beginning of the entire cell,  
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the relations of the entire cell can be expressed as follows: 
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     Then, Eqs. (12) can be rewritten to obtain the relations at 
left and right of two consecutive entire cell: 
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RkskR YTJY )1(
1
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where ss TJT ⋅= −1 .  Afterwards, dropping the subscripts 

“R”, Eqs. (13) can be written as a compact form:  
 

)1( −= ksk YTY . (14) 

 
III. RESULTS AND DISCUSSIONS 

     The composite rod of this investigation can be 
considered as a chain of cells according to the transfer matrix 
of the single cells.  The transfer matrix sT  has two 

frequency-dependent eigenvalues, λ1=eμ and λ2=e-μ, which 
determined the nature of the wave dynamics in the periodic rod 
with the defect.  
     In the above section, μ is the propagation constant of the 
periodic system.  The real part of μ represents the decay of the 
amplitude of the wave propagation from one cell to the 
following cell and the imaginary part of μ determines the phase 
difference in two adjacent elements.  The waves will 
propagate along the rod indicating the pass band and if not then 
the waves will be attenuated, indicating a stop band.  The 
wave propagation of the periodic structures is possible within 
frequency band where μ has only imaginary part and 
attenuation occurs for the frequency band that provides a real 
part to the propagation constant. 
     To validate the proposed algorithm and calculations, 
comparisons between the present results and the results of 
existing models are made first.  The numerical results are 
compared with those obtained by Ruzzene [9] in Table 1.  The 
solutions solved by present model are shown to have a good 
accuracy.  
     In this study, the molded plastic is used to be as defects.  
The Young’s modulus of the aluminum, steel, and molded 
plastic are 70GPa, 210GPa, 4GPa, respectively.  The 
densities of the aluminum, steel, and molded plastic are 
2700kg/m3, 7800kg/m3, and 1726kg/m3, respectively.  The 
density of the SMA is 6500kg/m3.  The effect of the 
 

Table 1. Comparisons of the first stop band 

 
Boundaries of 
first stop band 

Present 
(rad/s) 

Reference [9] 
(rad/s) 

Upper 620 ~625 
25°C 

Down 1365 ~1360 

Upper 620 ~625 
50°C 

Down 1410 ~1400 

Upper 620 ~625 
75°C 

Down 1520 ~1530 

 

temperature on the Nitinol Young’s modulus is shown in Figure 
2, as measured experimentally inside a temperature-controlled 
chamber (Delta Design, Model 5900). 
     In Figure 3, the stop bands of the periodic steel and SMA 
rod structure with defect are presented.  Figure 3(a) and 
Figure 3(b) are the real and imaginary part of the propagation 
constant of the periodic system with defects.  The physical 
and geometrical parameters are E1=210GPa, E2=30GPa 
(25oC), E3=4GPa, l2=5l1=5cm, and h1=h2=h3=1cm.  The first 
stop band of the periodic system without and with defects is 
110k-527k rad/s and 135-641k rad/s, respectively.  But with 
defects, a small stop band will occur and the range of the 
additional stop bands is 97k-126k rad/s.  It is an interesting 
point of the additional stop band as a result of the defects and 
we can use the characteristics to design a good acoustic wave 
filter. 
     The effects of the length ratios ( 13 ll=λ , where l1=1cm) 

on the propagation constants of the steel and SMA periodic 
system with a defect are plotted in Figure 4.  The physical and 
geometrical parameters are E1=210GPa, E2=30GPa (25oC), 
E3=4GPa, and l2=5l1.  With different length of the defect, the 
location and width of stop band will be changed.  The width 
of the stop band will be smaller with decreasing length of the 
defect and the stop band of the system will move forward with 
increasing length of the defect. 
     Finally, the effects of temperatures are discussed in 
Figure 5.  The propagation constants of steel and SMA 
periodic rod with a defect at 25oC, 50oC, and 75oC are plotted 
in Figure 5.  The physical and geometrical parameters are 
E1=210GPa, E3=4GPa, l2=5l1=5cm, and h1=h2=h3=1cm.  As 
the temperatures increase, the width of first stop band of the 
system will decrease and move towards to left.  The ranges of 
the stop band at 25oC, 50oC, and 75oC are 135k-640k rad/s, 
146k-642k rad/s, and 158k-644k rad/s.   
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Fig. 2. Experimental evaluations of SMA Young’s modulus 
against temperature [10] 
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Fig. 3. Propagation constants of steel and SMA periodic rod 
system 
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Fig. 4. Effects of length ratios λ on propagation constants of 

the steel and SMA periodic rod with defect 
 

IV. CONCLUSIONS 
     The presented examples demonstrate the utility of the 
active and passive control capabilities in tuning the width and 
location of the pass and stop bands according to the nature of 
the external excitation.  According to the results, it can be 
observed that we can filter the certain bands of frequencies by 
choosing a suitable periodic system.  By adding a defect in the  
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Fig. 5. Propagation constants of steel and SMA periodic rod 

with defect at various temperatures 
 
periodic system, the stop band can be changed and filter 
different range of the bands of frequencies with various 
properties of the defects. 
     The techniques of the periodic sandwich structures have 
significant effects on the wave propagations and for controlling 
the flow of vibration and sound radiation to design a quiet and 
stable system.  In present study, the investigation hopes to 
provide the basic guidelines to design periodic structures with 
various defects to achieve certain filtering characteristics. 
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