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Dynamic Design of Beams Using Soft Tuning
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ABSTRACT

A technique for shifting the natural frequencies of beam structures to designated values by
using a soft-tuning method is proposed. When the stiffness of beams is changed, the natural
frequencies are also altered. Structural stiffness can be increased by enhancing the structures, e.g.,
strengthening them. Similarly, the stiffness can also be reduced by softening the structures. The
natural frequencies can be shifted to the desired values by tuning the depths and locations of cracks,
the procedure which is proposed in this report. This method utilizes a transfer matrix technique to
obtain an analytical characteristic equation of the system, on which the dynamic frequency tuning is
based. Two examples using this method are demonstrated and experimentally validated.
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I. INTRODUCTION

Shifting or moving the structural resonance out of a
specific frequency range, is advantageous to reducing the
structural vibroacoustic response [13]. Most of the previous
studies related to shifting the natural frequencies away from the
forcing frequency or to a higher value for structures are based
on optimization methods. Different optimization strategies
related to the minimization of the vibroacoustic response have
been developed and can be found in the literature [5].

For most of the cases, structural stiffness is increased to
make the structures stronger by changing the dimensions of the
structural components or by including some extra structural
components.
frequencies are altered through the addition of auxiliary

For some structural systems, the natural
components such as masses, ribs, etc. The addition of an
auxiliary “spring-mass-damper” system is an effective strategy
to control the natural frequencies of the system [4, 9].
Generally, these studies focused on determining the natural
frequencies associated with different boundary conditions and
were limited to straightforward vibration response calculations.
Wang and Cheng [13] used the structural patches to change the
structural natural frequencies. Some studies used structure
dimples to modify the vibration characteristics [1].

In this paper, the natural frequencies of beam structures
are changed to designated values by using soft tuning methods,
that is, beam stiffness is reduced by making beam structures
softer. The easiest way to make beams softer is to create cracks
on beams artificially. The existence of cracks will alter the
dynamic characteristics of structures. The dynamics of cracked
structures has been a topic of active research during the last
decade. When a structural component is subjected to a crack,
the crack induces a local flexibility which is a function of the
crack depth, thereby changing its dynamic behavior and its
stability characteristics. The dynamic behavior of the cracked
structures was studied by several analytical and numerical
methods [8, 10, 11]. Dimarogonas [3] presents a state of review
on the dynamics of the cracked structures. A complete cracked
beam vibration theory is also developed by Chondros and
[2] for the
Euler-Bernoulli beam with single-edge or double-edge open

Dimarogonas lateral vibration of cracked
cracks. In [2], the crack region as a local flexibility was
expressed by a crack disturbance function f{x, z) which could
be derived from the stress intensity factors in the theory of
fracture mechanics. In most of the previous studies, the model
of Euler-Bernoulli beam theory by deriving the differential
equation and the associated boundary conditions for a uniform
Euler-Bernoulli beam containing one or two cracks are often

used and discussed. Lin et al. [8] presents a hybrid

that efficient

computation of the eigensolutions for an arbitrary number of

analytical/numerical method permits  the
cracks of a beam with various boundary conditions. The
method is based on the use of massless rotational spring to
present the cracks, and by the compatibility conditions of each
crack, the relationships of the four integration constants of the
eigenfunctions between adjacent sub-beams can be determined
[8]. By using the transfer matrix, the characteristic equation of
the system can be obtained analytically. The depths and
locations of cracks control the dynamic characteristics of this
system. In this way, the dynamics of beams can be shifted to
specific values through the method of crack tuning.

Il. THEORETICAL MODEL

An Euler-Bernoulli beam of length L and with kopen
cracks is considered as in Fig. 1. It is assumed that the cracks
are located at points X;, X,,..., X; such that
0< X; < X, <...< X; < L. The vibration amplitudes of the
transverse displacements of the beam are denoted by Y;(X, 7)
on the interval X; ;< X <X;, where the sub-index i represents the
i-th segment and i=1, 2,..., k+1 (refer to Fig. 1). The entire
beam (whole domain) is now divided into (k+1) segments with
lengths Ly, Ly,..., L1, respectively which are separated by &
cracks. The equation of motion for each segment, assuming
with uniform cross section, is [8]:

4 2
prf D | SHAT)
o0X oT

X <X <X, i=12,...,k+1 1)
where E is Young’s modulus of the material, 7 is the moment of
inertia of the beam cross-section, p is the density of material
and 4 is the cross-section area of the beam.

The boundary conditions of the beam for the simply
supported case are:

Y
A
Crack 1 Crack 2 Crack k
T T T | o X
é; L X, L, X, L, X, L., g %
I~ I3 “1

Fig. 1. A beam with k cracks located at positions X3, X, ...,
X, respectively, and the sub-domains are L;, L,,...,
Lk, Lk+1, Where L1+L2+.. .+ Lk+Lk+1:L.

uli



Journal of Science and Engineering Technology, Vol. 6, No. 2, 2010

11

Y0, 7) = Y(L, T)=0, (2,3)

Y10, T) =YL, 7)=0, (4,5)
The “compatibility conditions” enforce continuities of

the displacement field, bending moment and shear force

respectively across each crack and can be expressed:

L(X7T) = Yin(X7\T), (6)
Y (X7 1) = Y (X[7), ("
Y(X7.T) = Yu(X5T),i=1,2,..., k (8)

where the symbols X;" and X; denote the locations

immediately above and below the cracks. Moreover, a
discontinuity into the slope of the beam across each crack

exists and can be expressed [8]:

i’-l-l(X;—’T) —Y;,(Xl_,T) = HlLYl:_]_(X:—rT) ’ i:l, 2,..., k
9)
where 6; is the non-dimensional i-¢2 crack section flexibility

which are functions of the crack extent [11]. For double-side
open cracks, refer to Fig. 2(a) [11]:

6,677 o(7) (5) (10)
where 7; = % , a; is the depth of the i-¢h crack and
fp(7;)=0.5335-0.9297,; +3.5007,% —3.1817,
+5.7937,% (1)
For single-side open cracks, refer to Fig. 2(b) [11]:
0,677 1,(7) (1) (12)

7:) =0.6384-1.0357, +3.72017;> —5.17737,> + 7.5537,*
J\i i i Vi Vi

~7.3327° +2.4909° . (13)

In the above, the following transformation quantities are
introduced:

Y
A
— A=A
|
X- T | 2m
| la
X B
(Section A-A)
L
(a) Sketch of a double-side open crack
Y
— A=
la
X-772Z- T |m
x| B
(Section A-A)
L
(b) Sketch of a single-side open crack
Fig. 2. Double-side and single-side open cracks
Y
= —, 14
y =7 (14)
X
X = —, 15
7 (15)
p= (16)
AL
L
;= Tl , a7
X
X; = Tl . (18)

Thus, in each segment, Eq. (1) can then be expressed in the

form as:

4 2
E_ga yi(jfvf) + pAa )’i(zxxt) -0
L ox ot
i=12,..,k+1.

Xiq <x<Xx, (19)
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The transformations of “compatibility conditions” from Egs.
(6) to (9) are:

yi(xi 1) = yia (6 0) (20)
Vi) = yia o), (21)
Vi 1) =yl 1), (22)
Vi () = yi () =0y (x5 1) (23)

where =1, 2,..., k and 6; is in Egs. (10) and (12) for

double-side and single-side open cracks respectively.

I11. SOFT TUNING BY CRACKS
The eigensolutions for the cases of commonly used
different boundary conditions are derived by the transfer matrix
method [6, 7]. For the examples of one crack case, the
characteristic equations of the system for different boundary
conditions are obtained and are re-written here as [6]:

1. Simply-Supported Beam

4sin 4, sinh A4, + 6, 4, (cos 4, sinh 4, +sin 4, cosh 4,,)

-6, 4, [cos(4,,(1-21)) sinh 4, +sin 4, cosh(4,(1-27))]=0
(24)

2. Cantilever Beam
4 +4cos 4, cosh A, + 6 A, (cos4,sinh 4, —sin 4, cosh 4,,)
+6, 4, [cos(4,(1—21))sinh 4, —sin 4, cosh(4,,(1—-24))]

+2 6, A, [cos(A,(L—-1)) sinh(4,1-4))
—sin(4,,(1-14) ) cosh(4,,(1-14))]

+2 6, 4, [sin(4,}) cosh(4,})—cos(4,h4) sinh(4,4)] =0
(25)

3. Fixed-Fixed Beam

—4+4cos A, cosh A, +6 4, (cos4,sinh 4, —sin 4, cosh 4,)
+6, 4, [cos(4, (1-24))sinh 4, —sin 4, cosh(4,,(1-24))]

+26; A, [cos(4,(L—-1;)) sinh(A, (1 -1))
—sin(4, @~ 1)) cosh(2, @ —1,))]

26, 4, [sin(4,}) cosh(4,l) —cos(4,}) sinh(4,/)]=0
(26)

4. Free-Free Beam

4—4cosA, cosh 4, -6, 4, (cos4,sinh 4, —sin 4, cosh 4,)

-6, 4, [cos(4,,(1-24))sinh 4, —sin 4, cosh(4,,(1—24))]

+2 6, 4, [cos(4, (L—1)) sinh(4,(L-1))
—sin(4,, (L-1;)) cosh(4, (L —1))]

26, 4, [sin(4,1) cosh(4,})—cos(4,4) sinh(4,/)]=0
@7)

where 6, is the non-dimensional crack section flexibility in
Eg. (10) and (12) for double and single-side open cracks
respectively, /; is the non-dimensional crack location, and 4, are
the eigenvalues corresponding to the natural frequencies w, of
the system as [6]:

_pdoyl’
EI

4
ﬂ'l’l

(28)

In the above equations, there are three parameters: (1) 6,
(2) I, and (3) 4,. If some specific designated natural frequency
of the beam w, is required, substituting the 4, value
corresponding to this natural frequency from Eqg. (28) to these
equations (Eq. (24) ~ Eq. (27)), the required relationship of 6,
and /; can then be obtained.

IV. NUMERICAL RESULTS AND
DISCUSSION
In order to show the procedure of soft tuning by cracks
and validate the method presented in this article, two numerical
examples are used and compared with the available data.
Example A: For the case of a cantilever beam, as ref. [12], the

beam parameters are: beam length L=300 mm, width
B=20.0 mm, height H=20.0 mm, Young’s modulus
E=2.06x10" N/m?, density p=7,800 Kg/m®. First, a

one-single-side open crack is used to tune the natural frequency

of this beam to a designated value of 174.0 Hz. The

corresponding eigenvalue to this frequency is 4;=1.82103

pA a)12L3
EI

the relationship between the non-dimensional crack location

(A1 = ). Substituting this value into Eq. (25) and

(1) and the non-dimensional crack flexibility (¢;) can be
obtained as shown in Fig. 3.

With any pair of /; and 6; values on this curve, we can
obtain the designated beam natural frequency of 174.0 Hz. For
example, if the crack location is chosen to be /; =0.55, then the
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Fig. 3. The relationship between the non-dimensional crack
location /; and the non-dimensional crack flexibility
6, using one tuning frequency.

corresponding crack flexibility is #,=0.3801 (refer to Fig. 3).
When the value of crack flexibility 6; is determined, the
non-dimensional crack depth j7; can then be obtained from
Eq. (12) and the value is 0.623 in this case as shown in Fig. 4.

The above procedure is used to tune the beam to one
designated natural frequency. Moreover, two desired natural
frequencies can also be tuned simultaneously by using this
method. For the above example, if two designated natural
frequencies, i.e., 174.0 Hz and 988.9 Hz, are required, using the
same procedure, two curves can be obtained as shown in Fig. 5.
The intersection of curves in Fig. 5 is the point required to
satisfy these two frequencies. The solution of these two curves
is /; =0.467 and 0,=0.2144 (refer to Fig. 5).

0.7

Non-dimensional Crack Flexibility

0.1 0.2 0.3 0.4 0.5 0.6 0.7
Non-dimensional Crack Depth

Fig. 4. The relationship between the non-dimensional crack
depth 7; and the non-dimensional crack flexibility

0.

Non-dimensional Crack Flexibility

Fig. 5. The determination of the non-dimensional crack
location /; and non-dimensional crack flexibility 6,
using two tuning frequencies for Example A.

The non-dimensional crack depth corresponding to this

value of crack flexibility is y; =0.498 , referring the curve in
Fig. 4. In the experiment in Rizos and Aspragathos [12], the
crack is located 140 mm from the fixed end (/; =0.4667) and the
crack depth is 10 mm (y, =0.50), the lowest measured three
natural frequencies are: 171 Hz, 987 Hz and 3034 Hz [12]. It
can be observed that the first two measured natural frequencies
are very close to our designated natural frequencies.
Example B: For another comparison, the case is of a cantilever
beam with one single-side open crack. The beam parameters
are: length L=580 mm, width B=12.7 mm, height H=12.7 mm,
Young’s modulus of elasticity £=2.06x10* N/m?, and density
p=7800 Kg/m®. The desired two natural frequencies of the
beam are 29.0 Hz and 180.0 Hz. Using the method proposed in
this article, two curves are obtained as shown in Fig. 6. The
solution of these two curves is /; =0.383 and 6,=0.1790 (refer
to Fig. 6).

The non-dimensional crack depth corresponding to this
value of crack flexibility is 7, =0.715 as shown in Fig. 7.

In the experiment in [6], the crack is located 230 mm
from the fixed end (/; =0.3965) and the crack depth is 8.5 mm
(ay =0.67). Using the experimental modal test, the measured
transfer function is shown in Fig. 8 and the measured lowest
three natural frequencies are: 28 Hz, 179 Hz and 502 Hz [6].

Table 1 and Table 2 show the comparisons for the soft
tuning of the non-dimensional crack location and the
non-dimensional crack depth and the experimental results for
the above examples. It is also observed that the measured
frequencies of the cracked beam system are very close to our
tuning designated natural frequencies.
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Fig. 6. The determination of the non-dimensional crack
location /; and non-dimensional crack flexibility 6,
using two tuning frequencies for Example B.

Non-dimensional Crack Flexibility

Non-dimensional Crack Depth

Fig. 7. The determination of the non-dimensional crack

depth » from the non-dimensional crack
flexibility 6, for Example B.
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Fig. 8. Measured transfer function for a cracked cantilever
beam of Example B

Table 1. Comparisons (Example A) of crack tuning for a
cantilever beam using in ref [12]

Tuned Measured
(designated) (validation)
Natural frequency 174.0 171.0
(Hz) 988.9 987
Non-dim. crack location
0.4670 0.4667
h
Non-dim. crack depth
7 0.498 0.50

Table 2. Comparisons (Example B) of crack tuning for a
cantilever beam using in ref [6]

Tuned Measured
(designated) (validation)
Natural frequency 29.0 28
(Hz) 180.0 179
Non-dim. crack
. 0.383 0.3996
location (/,)
Non-dim. crack depth

= 0.715 0.67

(n)

If only one natural frequency is required to be tuned, the
solution pair (/;, 6;) is not unique. When two natural
frequencies are required, there is only one solution pair (1, ;).
This means that two natural frequencies can be tuned for one
crack. Moreover, when three natural frequencies are required,
at least two cracks are needed for tuning this system.
Theoretically, using the same method, although a little bit
complicated, the solutions still can be found. Practically, the
conditions for multi-frequencies tuning is not very common in
engineering applications.

V. CONCLUSIONS

A technique for tuning the natural frequencies of beam
structures to designated values is presented. The method
utilizes a transfer matrix method to obtain an analytical form of
the characteristic equation of the system. The natural
frequencies are varied by tuning the crack extent and crack
location of the beam structures. Results showed that multiple
natural frequencies could be tuned simultaneously to the
desired values and the method was experimentally validated.
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