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ABSTRACT 
     A technique for shifting the natural frequencies of beam structures to designated values by 

using a soft-tuning method is proposed. When the stiffness of beams is changed, the natural 

frequencies are also altered. Structural stiffness can be increased by enhancing the structures, e.g., 

strengthening them. Similarly, the stiffness can also be reduced by softening the structures. The 

natural frequencies can be shifted to the desired values by tuning the depths and locations of cracks, 

the procedure which is proposed in this report. This method utilizes a transfer matrix technique to 

obtain an analytical characteristic equation of the system, on which the dynamic frequency tuning is 

based. Two examples using this method are demonstrated and experimentally validated. 
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摘 要 

  本文主要提出一方法使樑結構之自然頻率調整至一指定頻率值。通常結構勁度改變，其自

然頻率亦隨之而變。增加結構勁度能使結構加強；相同的，使結構減弱亦可調整其自然頻率。

本文使用人為加一裂縫至樑結構，使樑結構之自然頻率調至一指定之頻率值。先使用轉移矩陣

法得系統之特徵方程式，再利用此特徵方程式調整此系統之動態特性。本文並附實例說明及實

驗驗證。 

關鍵詞：軟調整，自然頻率，轉移矩陣，特徵方程式 
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I. INTRODUCTION 
     Shifting or moving the structural resonance out of a 
specific frequency range, is advantageous to reducing the 
structural vibroacoustic response [13]. Most of the previous 
studies related to shifting the natural frequencies away from the 
forcing frequency or to a higher value for structures are based 
on optimization methods. Different optimization strategies 
related to the minimization of the vibroacoustic response have 
been developed and can be found in the literature [5]. 
     For most of the cases, structural stiffness is increased to 
make the structures stronger by changing the dimensions of the 
structural components or by including some extra structural 
components. For some structural systems, the natural 
frequencies are altered through the addition of auxiliary 
components such as masses, ribs, etc. The addition of an 
auxiliary “spring-mass-damper” system is an effective strategy 
to control the natural frequencies of the system [4, 9]. 
Generally, these studies focused on determining the natural 
frequencies associated with different boundary conditions and 
were limited to straightforward vibration response calculations. 
Wang and Cheng [13] used the structural patches to change the 
structural natural frequencies. Some studies used structure 
dimples to modify the vibration characteristics [1]. 
     In this paper, the natural frequencies of beam structures 
are changed to designated values by using soft tuning methods, 
that is, beam stiffness is reduced by making beam structures 
softer. The easiest way to make beams softer is to create cracks 
on beams artificially. The existence of cracks will alter the 
dynamic characteristics of structures. The dynamics of cracked 
structures has been a topic of active research during the last 
decade. When a structural component is subjected to a crack, 
the crack induces a local flexibility which is a function of the 
crack depth, thereby changing its dynamic behavior and its 
stability characteristics. The dynamic behavior of the cracked 
structures was studied by several analytical and numerical 
methods [8, 10, 11]. Dimarogonas [3] presents a state of review 
on the dynamics of the cracked structures. A complete cracked 
beam vibration theory is also developed by Chondros and 
Dimarogonas [2] for the lateral vibration of cracked 
Euler-Bernoulli beam with single-edge or double-edge open 
cracks. In [2], the crack region as a local flexibility was 
expressed by a crack disturbance function f(x, z) which could 
be derived from the stress intensity factors in the theory of 
fracture mechanics. In most of the previous studies, the model 
of Euler-Bernoulli beam theory by deriving the differential 
equation and the associated boundary conditions for a uniform 
Euler-Bernoulli beam containing one or two cracks are often 
used and discussed. Lin et al. [8] presents a hybrid 

analytical/numerical method that permits the efficient 
computation of the eigensolutions for an arbitrary number of 
cracks of a beam with various boundary conditions. The 
method is based on the use of massless rotational spring to 
present the cracks, and by the compatibility conditions of each 
crack, the relationships of the four integration constants of the 
eigenfunctions between adjacent sub-beams can be determined 
[8]. By using the transfer matrix, the characteristic equation of 
the system can be obtained analytically. The depths and 
locations of cracks control the dynamic characteristics of this 
system. In this way, the dynamics of beams can be shifted to 
specific values through the method of crack tuning. 
  

II. THEORETICAL MODEL 
     An Euler-Bernoulli beam of length L and with kopen 
cracks is considered as in Fig. 1. It is assumed that the cracks 
are located at points X1, X2,…, Xk, such that            
0< X1 < X2 <…< Xk < L. The vibration amplitudes of the 
transverse displacements of the beam are denoted by Yi(X, T) 
on the interval Xi-1< X <Xi, where the sub-index i represents the 
i-th segment and i=1, 2,…, k+1 (refer to Fig. 1). The entire 
beam (whole domain) is now divided into (k+1) segments with 
lengths L1, L2,…, Lk+1, respectively which are separated by k 
cracks. The equation of motion for each segment, assuming 
with uniform cross section, is [8]: 
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where E is Young’s modulus of the material, I is the moment of 
inertia of the beam cross-section, ρ is the density of material 
and A is the cross-section area of the beam.  
     The boundary conditions of the beam for the simply 
supported case are: 
 

 
2X  kL1X  2L kX 1+kL   1L  

 
 
Fig. 1. A beam with k cracks located at positions X1, X2,…, 

Xk, respectively, and the sub-domains are L1, L2,…, 
Lk, Lk+1, where L1+L2+…+ Lk+Lk+1=L. 
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Y(0, T) = Y(L, T)=0, (2, 3) 
 
Y″(0, T) = Y″(L, T)=0, (4, 5) 
 
     The “compatibility conditions” enforce continuities of 
the displacement field, bending moment and shear force 
respectively across each crack and can be expressed: 
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where the symbols +

iX  and −
iX denote the locations 

immediately above and below the cracks.  Moreover, a 
discontinuity into the slope of the beam across each crack 
exists and can be expressed [8]: 
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 (9) 
 
where θi is the non-dimensional i-th crack section flexibility 
which are functions of the crack extent [11]. For double-side 
open cracks, refer to Fig. 2(a) [11]: 
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where 
H
a i

i =γ , ai is the depth of the i-th crack and 
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4793.5 iγ+ . (11) 

 
For single-side open cracks, refer to Fig. 2(b) [11]: 
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In the above, the following transformation quantities are 
introduced: 
 
 

 
(a) Sketch of a double-side open crack 

 

 
(b) Sketch of a single-side open crack 

 

Fig. 2. Double-side and single-side open cracks 
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Thus, in each segment, Eq. (1) can then be expressed in the 
form as: 
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The transformations of “compatibility conditions” from Eqs. 
(6) to (9) are: 
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where i=1, 2,…, k  and θi is in Eqs. (10) and (12) for 
double-side and single-side open cracks respectively. 
 

III. SOFT TUNING BY CRACKS 
     The eigensolutions for the cases of commonly used 
different boundary conditions are derived by the transfer matrix 
method [6, 7]. For the examples of one crack case, the 
characteristic equations of the system for different boundary 
conditions are obtained and are re-written here as [6]: 

1. Simply-Supported Beam 
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2. Cantilever Beam 
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3. Fixed-Fixed Beam 
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4. Free-Free Beam 
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where θ1 is the non-dimensional crack section flexibility in  
Eq. (10) and (12) for double and single-side open cracks 
respectively, l1 is the non-dimensional crack location, and λn are 
the eigenvalues corresponding to the natural frequencies ωn of 
the system as [6]: 
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32
4 ωρλ = . (28) 

 
     In the above equations, there are three parameters: (1) θ1,  
(2) l1 and (3) λn. If some specific designated natural frequency 
of the beam ωn is required, substituting the λn value 
corresponding to this natural frequency from Eq. (28) to these 
equations (Eq. (24) ~ Eq. (27)), the required relationship of θ1 
and l1 can then be obtained. 
 

IV. NUMERICAL RESULTS AND  
DISCUSSION 

     In order to show the procedure of soft tuning by cracks 
and validate the method presented in this article, two numerical 
examples are used and compared with the available data. 
Example A: For the case of a cantilever beam, as ref. [12], the 
beam parameters are: beam length L=300 mm, width    
B=20.0 mm, height H=20.0 mm, Young’s modulus 
E=2.06×1011 N/m2, density ρ=7,800 Kg/m3. First, a 
one-single-side open crack is used to tune the natural frequency 
of this beam to a designated value of 174.0 Hz. The 
corresponding eigenvalue to this frequency is λ1=1.82103 

(
EI

LA 32
14

1
ωρλ = ). Substituting this value into Eq. (25) and 

the relationship between the non-dimensional crack location 
(l1) and the non-dimensional crack flexibility (θ1) can be 
obtained as shown in Fig. 3. 
     With any pair of l1 and θ1 values on this curve, we can 
obtain the designated beam natural frequency of 174.0 Hz. For 
example, if the crack location is chosen to be l1 =0.55, then the  
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Fig. 3. The relationship between the non-dimensional crack 

location l1 and the non-dimensional crack flexibility 
θ1 using one tuning frequency. 

 
corresponding crack flexibility is θ1=0.3801 (refer to Fig. 3). 
When the value of crack flexibility θ1 is determined, the 
non-dimensional crack depth 1γ can then be obtained from  

Eq. (12) and the value is 0.623 in this case as shown in Fig. 4. 
     The above procedure is used to tune the beam to one 
designated natural frequency. Moreover, two desired natural 
frequencies can also be tuned simultaneously by using this 
method. For the above example, if two designated natural 
frequencies, i.e., 174.0 Hz and 988.9 Hz, are required, using the 
same procedure, two curves can be obtained as shown in Fig. 5. 
The intersection of curves in Fig. 5 is the point required to 
satisfy these two frequencies. The solution of these two curves 
is l1 =0.467 and θ1=0.2144 (refer to Fig. 5). 
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Fig. 4. The relationship between the non-dimensional crack 
depth 1γ  and the non-dimensional crack flexibility 

θ1. 
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Fig. 5. The determination of the non-dimensional crack 

location l1 and non-dimensional crack flexibility θ1 
using two tuning frequencies for Example A. 

 
     The non-dimensional crack depth corresponding to this 
value of crack flexibility is 498.01 =γ , referring the curve in 

Fig. 4. In the experiment in Rizos and Aspragathos [12], the 
crack is located 140 mm from the fixed end (l1 =0.4667) and the 
crack depth is 10 mm ( 50.01 =γ ), the lowest measured three 

natural frequencies are: 171 Hz, 987 Hz and 3034 Hz [12]. It 
can be observed that the first two measured natural frequencies 
are very close to our designated natural frequencies. 
Example B: For another comparison, the case is of a cantilever 
beam with one single-side open crack. The beam parameters 
are: length L=580 mm, width B=12.7 mm, height H=12.7 mm, 
Young’s modulus of elasticity E=2.06×1011 N/m2, and density 
ρ=7800 Kg/m3. The desired two natural frequencies of the 
beam are 29.0 Hz and 180.0 Hz. Using the method proposed in 
this article, two curves are obtained as shown in Fig. 6. The 
solution of these two curves is l1 =0.383 and θ1=0.1790 (refer 
to Fig. 6). 
     The non-dimensional crack depth corresponding to this 
value of crack flexibility is 715.01 =γ  as shown in Fig. 7.  

     In the experiment in [6], the crack is located 230 mm 
from the fixed end (l1 =0.3965) and the crack depth is 8.5 mm 
(a1 =0.67). Using the experimental modal test, the measured 
transfer function is shown in Fig. 8 and the measured lowest 
three natural frequencies are: 28 Hz, 179 Hz and 502 Hz [6]. 
     Table 1 and Table 2 show the comparisons for the soft 
tuning of the non-dimensional crack location and the 
non-dimensional crack depth and the experimental results for 
the above examples. It is also observed that the measured 
frequencies of the cracked beam system are very close to our 
tuning designated natural frequencies. 
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Fig. 6. The determination of the non-dimensional crack 

location l1 and non-dimensional crack flexibility θ1 
using two tuning frequencies for Example B. 

 

0.2 0.3 0.4 0.5 0.6 0.7 0.8
0

0.05

0.1

0.15

0.2

0.25

non-dimensional crack depth

no
n-

di
m

en
si

on
al

 c
ra

ck
 fl

ex
ib

ili
ty

0.715 

0.1790 

Non-dimensional Crack Depth  
 
Fig. 7. The determination of the non-dimensional crack 

depth 1γ  from the non-dimensional crack 

flexibility θ1 for Example B. 
 

 
 
Fig. 8. Measured transfer function for a cracked cantilever 

beam of Example B 

Table 1. Comparisons (Example A) of crack tuning for a 
cantilever beam using in ref [12] 

 
Tuned 

(designated) 

Measured 

(validation) 

Natural frequency  

(Hz) 

174.0 

988.9 

171.0 

987 

Non-dim. crack location

l1 
0.4670 0.4667 

Non-dim. crack depth 

1γ  0.498 0.50 

 
Table 2. Comparisons (Example B) of crack tuning for a 

cantilever beam using in ref [6] 

 
Tuned 

(designated) 
Measured 

(validation) 
Natural frequency 

(Hz) 
29.0 

180.0 
28 

179 
Non-dim. crack 

location (l1) 
0.383 0.3996 

Non-dim. crack depth 
( 1γ ) 0.715 0.67 

 
     If only one natural frequency is required to be tuned, the 
solution pair (l1, θ1) is not unique. When two natural 
frequencies are required, there is only one solution pair (l1, θ1). 
This means that two natural frequencies can be tuned for one 
crack. Moreover, when three natural frequencies are required, 
at least two cracks are needed for tuning this system. 
Theoretically, using the same method, although a little bit 
complicated, the solutions still can be found. Practically, the 
conditions for multi-frequencies tuning is not very common in 
engineering applications. 
 

V. CONCLUSIONS 
     A technique for tuning the natural frequencies of beam 
structures to designated values is presented. The method 
utilizes a transfer matrix method to obtain an analytical form of 
the characteristic equation of the system. The natural 
frequencies are varied by tuning the crack extent and crack 
location of the beam structures. Results showed that multiple 
natural frequencies could be tuned simultaneously to the 
desired values and the method was experimentally validated. 
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