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ABSTRACT 

    Semantic segmentation, also known as dense prediction, is a task in computer vision that is 

critical for scene understanding and commonly used for pixel-wise labeling of whole images. This 

paper proposes a new semantic segmentation network architecture dedicated to decoder structural 

design. Moreover, different mapping mechanisms are introduced as a part of the decoder network. 

The proposed architecture was tested on the 21 classes of the Pascal Visual Object Classes Challenge 

2012 data set. The proposed method has a higher mean intersection over union score and pixel 

accuracy than those of the U-SegNet, UNet, and ENet models but similar results to those of the 

SegNet model. Additionally, the effect of using magnification methods in the decoder network on 

object segmentation performance was investigated. 
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摘要 

  在計算機視覺中，語義分割是最重要的任務之一，因其對於場景理解至關重要。通常，語

義分割用於整個影像之像素標記，故又稱為密集預測。本文之目的在於提出一種新的語義分割

網路架構，特別著重在解碼器結構的細部設計。本文創新之處在於引入不同的映射機制作為解

碼器網路的一部分。本文所提方法在 21個類別的 Pascal VOC 2012資料集上進行測試，其結果

同時與 U-SegNet，UNet 和 ENet 等模型進行比較，實驗結果顯示，本文所提方法具有更高的

mIoU 分數與像素精度，但與 SegNet 相比，其分割效能相當。此外，本文亦探究解碼器網路中

特徵圖放大方法對物體分割性能之影響。 
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Ⅰ. INTRODUCTION 

The task of image semantic segmentation is to classify 

instances in a whole image at the pixel-level, each instance (or 

class/category) corresponding to an object in the image or 

representing a part of the image, namely person, bicycle, grass, 

road, sky, and so on. This task is also referred to as dense 

prediction. Hence, the goal of this task is to label each pixel in 

an image with a corresponding class of what is being 

represented. Semantic segmentation (or object segmentation) is 

very critical for scene understanding to realize how a deep 

learning model can better learn the global context of a visual 

content. 

In past decades, artificial intelligence (AI) based on deep 

learning has received a lot of attention, and it successfully 

attracts many important investments in the fields of self-driving 

vehicles [21], robotic arms [17], and medical diagnosis [9]. 

More and more applications require accurate and efficient 

image segmentation techniques. There are several key problems 

in the field of computer vision [2], namely image classification 

[3], object detection [18] and semantic segmentation [4]. 

Among them, image classification [3] is to identify and label 

the class of each object in an entire image. Object detection [18] 

is to identify and locate all objects existing in the image. 

Semantic segmentation [4] is to identify the category of each 

pixel in the image, which usually labels same category pixels 

with the same color, as shown in Fig. 1. 

Semantic segmentation is one of the high-level tasks in 

computer vision that provides a very important way towards 

complete scene understanding through machine perception to 

 

 

Fig. 1. Typical results of semantic segmentation. In this 

picture, red, blue, green, yellow, purple and gray 

colors are used to label pedestrian, car, plants, traffic 

sign, sidewalk, and building, respectively (picture 

courtesy of [11]). 

 

visual context [15]. In the application of autonomous driving, 

vehicle behavior such as the determinations of steering angle 

and forward speed can be predicted by semantic segmentation 

of road scenery [24]. As a core task of computer vision, the 

importance of scene understanding can be inferred by the 

increasing number of applications on image segmentation. With 

the popularity of deep learning in past years, many semantic 

segmentation problems are being tackled using deep neural 

network architectures, most often convolutional neural 

networks (CNNs), which outperform other methods by a wide 

margin in terms of accuracy and efficiency [1, 4, 14, 20]. 

Fully convolutional network (FCN) [14] has been the first 

to develop an end-to-end architecture for semantic 

segmentation. The FCN uses images of any size as input and 

creates segmented images with the same size. The authors first 

modified the popular CNN’s architectures such as AlexNet [10], 

VGG16 [22], and GoogLeNet [23] to have a variant size input 

while replacing all fully connected layers with convolutional 

layers. Because the network generates multiple feature maps 

with small sizes and dense representations, upsampling is 

required to produce an output of the same size with the input. 

Generally, upsampling consists of a convolutional layer with a 

stride greater than one. It is often called deconvolution because 

it builds an output size that is larger than the input. In this way, 

the network is trained using pixel-by-pixel loss. In addition, 

they added skip connections in the network to incorporate 

high-level feature representations with more specific and dense 

representations at the top of the network. This work has 

reached a 62.2% mIoU score on the 2011 PASCAL VOC 

segmentation challenge using pre-trained models on the 

ImageNet dataset. 

UNet [20] is an extension of the FCN proposed by J. Long 

et al. in 2015 [14], which comprise two parts: an encoding part 

to compute features and a decoding part to spatially localize 

patterns in the image. The downsampling or encoding part has 

a FCN-like architecture extracting features with 33 

convolutions. The upsampling or decoding part uses transposed 

convolution (or deconvolution) reducing the number of feature 

maps while increasing their sizes. Feature maps from the 

downsampling part of the network are copied to the 

corresponding upsampling part to avoid losing pattern 
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information. Finally, a 11 convolution layer is used to deal 

with the feature maps to produce a segmentation map and thus 

classifies each pixel of the input image into categories. As 

consequence, the number of parameters of the model is reduced 

and it can be trained with a small labelled dataset. 

Mask R-CNN architecture was proposed by K. He et al. [4] 

in 2017 and it beat all earlier benchmarks on many COCO 

challenges. The Mask R-CNN is a Faster R-CNN [19] with 

three output branches: the first layer is a region proposal 

network (RPN) used to extract the region of interest (RoI). The 

second one processes the RoI to generate feature maps that are 

directly used to compute the bounding box coordinates and the 

predicted class. The third layer (i.e., FCN) is used to tackle 

feature maps to create the binary mask for a given RoI with a 

fixed size. The success of Mask R-CNN lies on the introduction 

of multi-task loss that involves the losses of the bounding box 

coordinates, the predicted class and the segmentation mask. 

This model has obtained 37.1% and 41.8% average precision 

score on the 2016 and 2017 COCO segmentation challenges, 

respectively.  

SegNet was originally submitted to CVPR2015 but it is 

not being published in CVPR. Instead, it is published in 2017 

TPAMI [1]. SegNet is a combination of encoder and decoder 

architecture with a final pixelwise classification layer. At the 

encoder network, same as the literature [20], convolutions and 

max pooling are carried out. While doing 22 max pooling, the 

corresponding max pooling indices are stored. At the decoder 

network, unpooling is conducted, where the max pooling 

indices at the corresponding encoder layer are recalled to 

upsample the feature maps. Finally, a K-class softmax classifier 

is used for pixelwise class prediction. Experimental results on 

CamVid dataset for road scene segmentation show 71.2% class 

average accuracy. 

U-SegNet, based on the architecture of SegNet [1], was 

proposed by Kumar et al. [11] in 2018, where the feature maps 

are magnified by the so-called unpooling method that passes 

the pooling indices to the corresponding upsampling layers in 

the decoder. U-SegNet adopts the similar structure of the UNet 

[20] by adding the skip-connection structure (i.e., SC structure) 

in the high-level convolutional layers, which can help to 

capture abstract information, thereby improving the resulting 

semantic segmentation. U-SegNet is mainly used for brain 

image segmentation tasks, and its segmentation performance is 

better than the state-of-the-art methods such as SegNet and 

UNet. 

Some popular deep convolutional networks such as 

AlexNet [10], VGG16 [22], GoogLeNet [23], and ResNet [5], 

which won the first place in 2012, 2013, 2014, and 2015 

ImageNet competitions, respectively, have made significant 

contributions to the field of computer vision, as they are often 

adopted as the basis of semantic segmentation (or object 

segmentation) networks. Especially, the introduction of residual 

blocks in ResNet [5] has contributed to deeper neural networks 

with 152 layers. The residual blocks resolves the difficulty of 

training a really deep architecture by introducing identity skip 

connections so that information in input layer can be passed to 

the next layer. The introduction of residual blocks becomes an 

important driving force for improving the performance of 

state-of-the-art semantic segmentation networks. 

In general, semantic segmentation not only requires 

categorization at pixel level but also a mechanism to project the 

discriminative features learned at different stages in the encoder 

onto the feature maps of the corresponding stages in the 

decoder. Different semantic segmentation approaches use 

different mapping mechanisms as a part of the decoder network. 

It turns out that the design of decoder network in the domain 

knowledge of semantic segmentation is a core problem 

involving the performance of that network. Therefore, the goal 

of this paper is to propose a novel architecture of semantic 

segmentation network dedicating to the design of the decoder 

using different feature mapping mechanisms. Comparison 

results with existing approaches show the feasibility and 

effectiveness of the proposed decoder network. 

The rest of this paper is organized as follows: Section 2 

describes the framework of the proposed method of object 

segmentation (or semantic segmentation). Experimental results 

are given and discussed in Section 3. Finally, the concluding 

remarks are provided in Section 4. 

 

Ⅱ. THE PROPOSED SEMANTIC 

SEGMENTATION ARCHITECTURE 

The proposed architecture of semantic segmentation 

network is shown in Fig. 2. There are a total of 5 stages in the 

encoder network. For the same stage, the feature maps of each 

convolutional layer output have the same size and channels. In 

the stages of 1-5, they contain 2-2-3-3-3 layers of Conv2D 

block, and the number of channels is 64-128-256-512-512 

channels, respectively. For the convenience of describing the 
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encoder network, each convolutional layer is numbered and 

denoted as EC-Conv-m-n, where EC, m and n represent 

Encoder, Stage and Layer, respectively, so EC-Conv-1-1 is 

represented as the first layer in the first stage of the encoder 

network. 

In this work, all convolutional layers use a 3 3  

convolution kernel with learnable weighted parameters. The 

pooling layer uses MaxPooling to reduce the feature map. After 

Conv2D layer, batch normalization [7] is applied to normalize 

the data of the convolutional layer output to avoid the 

occurrence of gradient vanishing or explosion in the 

backpropagation, followed by the use of PReLU (Parametric 

Rectified Linear Unit) [6], which is a nonlinear activation 

function that keeps the positive values unchanged but outputs 

smaller negative values instead of setting them to zero for the 

negative values. In this work, one important consideration 

using the PReLU activation function is to avoid gradient 

vanishing, and another is to avoid destroying the features 

output by the convolutional layers. 

Now, we turned our attention to the details of the decoder 

network, where each stage corresponds to the same one in the 

encoder network. In the decoder network, each convolution 

layer is denoted as DC-Conv-m-n, where DC, m, and n 

represent decoder, stage, and layer, respectively. For the design 

of semantic segmentation architectures, most of the encoder 

networks are the same. The only difference exists in the 

decoder network. In this work, we modified the decoder 

network of SegNet [1] by adding the skip connection (SC) 

structure. This idea is inspired by the feature pyramid network 

proposed by Lin et al. [13], from which it confirms the better 

result of pixel prediction accuracy when using the SC structure. 

To clearly describe the detail structure of SC in our work, 

we took stage-4 as an example for illustration. In this case, we 

chose the last layer of stage-4 in the encoder network 

(EC-Conv-4-3) because the deepest layer in the same stage can 

extract the most discriminative features. Then, we select the 

Upsampling-4 layer of the corresponding stage in the decoder 

network. In our case, image magnification by a factor of two is 

implemented using the upsampling method with nearest 

neighbor. These two layers, i.e., EC-Conv-4-3 and 

Upsampling-4, are then added together pixel by pixel. 

Finally, a 3 3  convolutional kernel is applied to 

generate the layer DC-Conv-4-1, as shown in Fig. 3(a). 

 

Fig. 2. The proposed semantic segmentation architecture   

with a symmetric encoder and decoder structure. As 

shown in this figure, the symbols 2  and 3  

indicate repeated two and three times of Conv2D 

block, respectively. In the parentheses of (batch, 

height, width, channel), they represent batch size, 

image height, image width, and channel number in 

order, respectively. 

 

This work compares the differences of the decoder 

network between ours, SegNet [1], UNet [20] and ENet [16]. 

As shown in Fig. 3(b), the MaxUnpooling can be considered as 

a reverse of MaxPooling but it recovers the feature maps 

resolution to its input size by recalling the max-indices from 

the corresponding layer in the encoder network. As shown in 

Fig. 3(c), UNet uses transposed convolution (or deconvolution) 

to first enlarge the feature maps by a factor of two and then 

convolve with a 3 3  kernel. Subsequently, these 

convolution layers are stacked (or concatenated) instead 
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Fig 3. Difference of magnification methods in the decoder.   

                (a) The proposed, (b) SegNet [1], (c) UNet [20], and (d) ENet [16]. 

 

of addition like ours with the layers corresponding to the 

same stage in the encoder network. But for ENet, the 

magnification of feature maps in the decoder network is 

realized using the MaxUnpooling method, where the 

maximum indices are stored in the encoder network, as 

shown in Fig. 3(d). For instance, the maximum indices in 

bottleneck2.0 are recorded and later used for the 

enlargement of feature maps in bottleneck4.0. The use of 

bottleneck in ENet is heavily inspired by the idea of the 

ResNet [5]. 

In our work, the last layer in the decoder network is 

used to predict pixel class using softmax function. To 

train the proposed semantic segmentation network, the 

loss function of pixel-wise cross entropy is used and 

defined as in Eq. (1).  

 

1 1

0 0

1
( , ) log ( , ),

H W

y x

Loss p x y t x y
C

 

 

    (1) 

 

where C, H, and W denote the number of pixel classes, 

height and width of feature maps, respectively. ( , )p x y  

and ( , )t x y  are the predicted and true class of pixel 

( , )x y  in test image, respectively. 

 

Ⅲ. RESULTS AND DISCUSSION 

The proposed method of semantic segmentation is 

evaluated on the Pascal VOC 2012 dataset. The operation 

system is Linux Ubuntu 18.04.2 and the integrated 

development environment is Python 3.5.2 64-bit version with 

installed library packages of Keras 2.2.4, Tensorflow GPU 

version 1.13.1 and Opencv-python 3.2.0.8. The system runs on 

NVIDIA DGX station with an Intel Xeon E5-2698 v4 2.2GHz 

processor and 256GB memory. The DGX station is equipped 

with 4x Tesla V100 GPU cards and each with 32GB memory. 

Thus, the total amount of GPU memory is 128 GB. 

The Pascal VOC 2012 dataset is popular and often used 

for object detection and segmentation. Over 11k images form 

the training and validation dataset, while 10k images are 

dedicated to the test dataset. The metric of mean Intersection 

over Union (mIoU) is commonly used to evaluate segmentation 

results. As for the metric of IoU, it is also used in object 

detection to evaluate the relevance of the pixel prediction. The 

IoU is the ratio between the areas of overlap and union between 

the ground truth and the predicted areas. Moreover, the mIoU is 

the average between the IoU of the segmented objects over all 

the images in the test dataset. 

In this work, we used Keras and TensorFlow to implement 

the proposed semantic segmentation network architecture. The 

proposed architecture is trained and tested on the Pascal VOC 

2012 dataset. The results of our proposed semantic 

segmentation architecture are compared with those obtained by 

UNet [20] and ENet [16]. The commonly used metrics for 

semantic segmentation evaluation are pixel accuracy (PA) and 

mIoU as defined in Eq. (2) and Eq. (3), respectively. 
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where C is the number of total classes to be predicted. Note that 

the background is also considered in Eq. (2) and Eq. (3), 

indicating that the total classes are C+1, where we can see the 

indices of i=0 to C and j=0 to C. The symbol iip means that the 

pixel ( , )x y belongs to class i and it is also identified as class i. 

However,
ijp can be considered as false negative because the 

pixel belonging to class i is identified as class j, and
jip can be 

thought as false positive due to the j-class pixel erroneously 

identified as class i. Finally, the Adam optimizer [8] is applied 

to train the proposed architecture. The learning rate and 

learning attenuation value are set to 5×10-4 and 2×10-4, 

respectively. 

Table 1 shows the results of mIoU and pixel accuracy for 

different semantic segmentation architectures. As seen from 

this table, the proposed method has higher mIoU and pixel 

accuracy when compared with the results achieved by UNet, 

ENet and U-SegNet, but has comparable results with SegNet. 

The improved rates of the proposed method in both mIoU and 

pixel accuracy are 3.11% ((45.29-43.92)/43.92*100%) and 

0.6% ((84.81-84.30)/84.30*100%), respectively when 

compared with the UNet. The visual results of object 

segmentation for ours, UNet, ENet and U-SegNet are shown in 

Fig. 4. 

As observed from Table 1, the segmentation performance 

in terms of mIoU and pixel accuracy for the U-SegNet is quite 

poor when compared with all the methods. U-SegNet is a deep 

learning architecture by adding the SC structure only in 

high-level layers, which is dedicated to the segmentation task 

of brain images. Aiming at the small medical image database 

IBSR-18, U-SegNet shows good performance in the 

classification rate of magnetic resonance images (MRI) of 

brains into 4 categories. However, the performance on the 

Pascal VOC 2012 dataset are not satisfactory. It might be due to  

Table 1. Results of mIoU and pixel accuracy on the Pascal 

VOC 2012 dataset for different semantic 

segmentation architectures 

Variants mIoU pixel accuracy 

Proposed 
SegNet 

UNet 
ENet 

U-SegNet 

45.29 

45.08 

43.92 
29.60 

0.08 

84.81 

84.85 

84.30 
78.88 

0.74 

Note: The values in bold means the highest in the mIoU and 

pixel accuracy columns. 

 

 

Fig. 4. Visual results of object segmentation for ours, UNet, 

ENet, and U-SegNet. As observed from this picture, 

the segmentation results obtained by ours clearly 

outperform those obtained by UNet, ENet, and 

U-SegNet. 

 

the use of less convolutional layers and only uses the SC 

structure in the high-level layers when compared with the 

models of the proposed, SegNet, UNet, and ENet. U-SegNet 

only uses the high-level layers’ SC structure because they 

believed it (i.e., SC structure) can help in reducing random 

noise in the low frequency for the images of IBSR-18 dataset. 

Clearly, this consideration cannot be applied to the Pascal VOC 

2012 dataset. 

Table 2 further shows the effect of different magnification 

methods in the decoder network on the performance of object 

segmentation for the proposed architecture. As observed from 

this table, the Upsampling method with nearest interpolation 

has better results either in terms of mIoU or pixel accuracy 

when compared with the Unpooling method. Clearly, the 

improved rate of mIoU is more prominent than pixel accuracy. 
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Table 2. Results of mIoU and pixel accuracy on the Pascal   

VOC 2012 dataset for different magnification 

methods in the decoder network for the proposed 

architecture 

Methods mIoU pixel accuracy 

Unpooling 43.72 84.43 

Upsampling 45.29 84.81 

Note: The values in bold means the highest in the mIoU and 

pixel accuracy columns. 

 

Table 3. Results of 21 categories of IoU scores in the Pascal 

VOC 2012 dataset for the proposed, UNet and ENet 

category Proposed UNet ENet 

background 85.72 85.49 81.30 
aeroplane 66.52 67.39 29.82 

bicycle 27.05 27.20 10.13 

bird 48.25 45.55 27.83 
boat 39.68 35.32 7.05 

bottle 27.55 28.21 4.98 

bus 61.55 62.76 47.28 
car 62.95 57.11 51.64 

cat 49.53 51.08 38.49 

chair 16.37 13.86 n/a 
cow 41.38 41.05 30.80 

diningtable 30.20 22.44 20.85 

dog 44.49 39.66 28.76 

horse 41.57 38.28 31.96 

motorbike 55.47 57.83 38.99 

person 62.11 61.63 52.18 
potted-plant 21.56 24.78 8.95 

sheep 48.28 44.22 31.92 
sofa 21.35 21.57 14.45 

train 60.03 58.59 39.24 

tvmonitor 39.52 38.23 24.94 

Note: The values in bold means the highest scores of IoU for a 

specific class. 

 

Table 3 shows the results of 21 categories of IoU scores in 

the Pascal VOC 2012 dataset for the proposed, UNet and ENet. 

As seen from this table, the proposed architecture has 13 

categories with the highest IoU scores when compared with the 

results obtained by UNet and ENet, indicating the superiority 

of the proposed method. As revealed by this table, ENet has the 

worst results among the three networks. As inferred from its 

network architecture, it might be caused by the less convolution 

layers and asymmetrical encoder-decoder architecture. 

 

Ⅳ. CONCLUSION 

In this paper, we have proposed a symmetric encoder and 

decoder semantic segmentation network architecture. The 

novelty of this architecture is to introduce different mapping 

mechanisms as a part of the decoder network. The proposed 

architecture was tested on the Pascal VOC 2012 dataset and 

satisfactory results are achieved. The proposed method has 

higher mIoU score and pixel accuracy when compared with the 

networks of U-SegNet, UNet and ENet but comparable with 

the results of SegNet. The improved rates of the proposed 

method in mIoU score and pixel accuracy are 3.11% and 0.6%, 

respectively, when compared with the UNet. Moreover, the 

effect of magnification methods in the decoder network on the 

performance of object segmentation is also investigated. As 

compared with the Unpooling method, the Upsampling method 

with nearest interpolation has better results either in terms of 

mIoU score or pixel accuracy. In addition, the improved rate of 

mIoU score is more prominent than the metric of pixel 

accuracy. In the future work, more variants of decoder network 

will be investigated to further improve the performance of 

object segmentation. 
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