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Abstract

The interaction between a singularity and a semi-infinite interfacial crack in a piezoelectric

bimaterial is studied using the extended Stroh formalism. The singularity considered here

involves a line dislocation, a line force and a line charge. The crack surface is assumed to be

mechanically free and electrically open. Based on the methods of mapping function, analytical

continuation in conjunction with alternating technique, the complex potentials are derived in

each medium of the anisotropic piezoelectric bimaterial. The generalized stress fields,

generalized stress intensity factors and the image forces exerted on the dislocation are given

explicitly. Numerical results demonstrate that the boundary conditions at the interface and the

crack surface are satisfied. They also show the effects of the singularity and material

combination on the generalized stress fields, generalized stress intensity factors and the image

forces.

Keywords: Dislocation, Image forces, Stroh formalism, Alternating technique

1. Introduction

Due to the intrinsic electro-mechanical coupling behavior,
piezoelectric materials such as ferroelectric ceramics can be
widely used in modern device. These piezoelectric ceramics are
brittle and in the manufacturing process easily produce
micro-defects, such as dislocations, cracks, voids, etc. The

existences defects induce high stress concentrations, which may

greatly influence the performance of piezoelectric devices. The
fundamental solutions for a dislocation and a concentrated force
are significant since the dislocation solutions can be served as
kernel functions for general crack and void problems. Barnett
and Lothe (1975) extended the six-dimensional Stroh formalism
to eight-dimensional formalism for solving the problem of a line
dislocation and a line charge in anisotropic piezoelectric

materials. Pak (1992) analyzed the piezoelectric cracks by a
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2 Analytic study on a singularity interacting with a semi-infinite interfacial crack in a piezoelectric bimaterial

distributed dislocation method. Meguid and Deng (1998)
analyzed the problem of a screw dislocation interacting with an
inhomogeneity in piezoelectric materials. Chung and Ting
(1996), Liu et al. (1997) Hung and Kuang (2001) and Zhou et al.
(2005) conducted an analysis on a line force and a line
dislocation in anisotropic piezoelectric materials with an elliptic
hole, crack or elliptic inhomogeneity etc. Lee et al. (2000)
discussed the interaction between a semi-infinite crack and a
screw dislocation under anti-plane mechanical and in-plane
electrical loadings. Chen et al. (2002 ) studied a piezoelectric
screw dislocation near a semi-infinite wedge crack. Chen et al.
(2004) solved the problem of a line dislocation interacting with a
semi-infinite crack in a piezoelectric solid. Yang et al (2007,
2008) used the dislocation solution to formulate the singular
integral equations for solving the problem of a crack in a
half-plane piezoelectric solid and the problem of an infinite
sequence of parallel cracks in an infinite piezoelectric solid.

In piezoelectric composites, cracks usually propagate along
the interface. The investigation of the problem involving
interface cracks between two bonded dissimilar piezoelectric
materials has attracted increasing attention. Suo et al. (1992)
examined the problem of an interface crack between dissimilar
anisotropic piezoelectric media and the dependence of
singularities at the tips of an interface crack with respect to
different electrical conditions. A circular-arc crack at the
interface of a circular piezoelectric inclusion and a piezoelectric
matrix under anti-plane shear and in-plane electric loading was
considered by Zhong and Meguid (1997) and Deng and Meguid
(1999), who derived complex series solution and closed-form
solution, respectively. Wang and Shen (2002) give a general
treatment on various interface defects at anisotropic
piezoelectric bi-material interface. Gao et. al. (2004) presented
the solutions for the problem of periodic interfacial cracks in two
dissimilar piezoelectric materials. Hao and Liu (2006)
investigated the interaction between a screw dislocation and a
semi-infinite interfacial crack in a transversely isotropic
magnetoelectro-elastic bi-material. The dislocation line is
perpendicular to the isotropic basal plane of the bi-material. In
the present paper, we investigate the plane problems for a line
force, charge and dislocation interacting with a semi-infinite
interfacial crack in anisotropic bi-materials. The analytical
derivation is based on the extended Stroh formalism, conformal

mapping and the analytical continuation technique which is

alternatively applied across the bounded interface and crack

surface.

2. Basic equations for two-dimensional
piezoelectric problem

In a fixed rectangular coordinates system (Xi, X,, X3), the

basic equations for linear piezoelectric materials can be written

as
5, =0 1)
D, =0 )
Yi =%(ui'j +U;;) ®)
E=-9 4)
i = CjaZu ~ € ®)
D, =eu7q +&Ed (6)

where repeated Latin indices mean summation and a comma
stands for partial differentiation. Ciu, € and €« are the
corresponding elastic, piezoelectric and dielectric constants. oy
u, D, ¢, Vi and E, are stress, displacement, electric
displacement, electric potential, strain and electric field,
respectively. For two-dimensional problems in which all the
variables depend on x; and x, only, following Suo et al. (1992),
Chung and Ting (1996) and Zhou et al. (2005), the general
solution is obtained by the linear combination of four complex

analytical functions

u=Af(z,)+Af(z,) (7)

¢=Bf(z)+Bf(z) ®)
where

u=[u;,u,,u;, o]

o=[4.4. 0.4

f(z)=[f,@) ) L) L@, z=x+px, k=1234

In which @, are the generalized stress functions, A and B are
4x4 complex matrices related to the material constants,

expressed as

A:[311a21a3’a4] 9
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B :[bl’bZ’b37b4] (10)

The eigenvalues Py and eigenvectors @, are determined by

the following equations

[Q+(R+RY)p+Tp?la=0 (11)
where
Cunn Cuar Cus 6 Ci Cg Cs €y
Q= Ci1 Gt Com G _ Cs Co Css €6
Cisin Caar Ciasr G Cs Gy Gy €
L € Ga G &y 4 L €r €5 €5 —&, _
Cu Cuz Cuz, ©m Ce Co Cu €
R= Coz Cpe Cizz € _ Cs Cx Ci €y
Ciaz Ciae Cize € Cs Cx Cis €y
L €112 €12 € & i _e.lﬁ € €4 —&p _
Cuz Cuzm Cuz €5 Cos Cx Ci €5
T= Cor Com Chm €y _ Cx Cp Cyu &
Care Coum Coamr €5 Ci Cu Cuy &y
€2 € Ep &y €x ©€p €y —&yp

and the eigenvectors b, can be obtained as
¢ 1
b, =(R" +pTTa, :—p_(Q+ pR)a, (12)
k

After the normalization for eigenvectors A and B, the following

relation can be obtained

B" A'llA A| 1 0
= 2lo o b -
The generalized stresses can be represented as
6,=[0y,0,5,05,D] = _[¢1,21¢2,2’¢3,2v¢4,2]t (14)
6,=[0,,0,,04,4, Dz]t :[¢1,1'¢2,17¢3,1!¢4,1]t (15)

If the traction and the normal component of electric
displacement D, are given on the boundary, the corresponding

boundary condition can be expressed as

6(z)=Bf(z) +Bf(z) = [ tds, t=[t,t,t,D,]' (16)

where tk (k=1,2,3) are the components of surface traction.

3. Assingularity in a homogeneous medium

In the previous section, it was shown that a general solution

for a generalized two-dimensional piezoelectric problem can be
expressed by four complex analytical functions f(z,). Now we
examine the solution fy(z,) of a singularity in a homogeneous
medium. Let the generalized line dislocation bP and the
generalized line force f° be applied at a point Z,, where
b? =[btvb(,,]t :[bxllbxzibx31b¢]t, b represents Burgers vector
and b¢ represents an electric potential jump across the slip
plane, and fP =[f',q]' =[f,,, f,,, f,5.Q]', f represents a line
force and ¢ represents a line charge. The equilibrium
conditions of the force and the single-valued conditions of the

generalized displacement are
md¢=fp, [ﬂdu=b” a7

where ¢ represents an arbitrary closed curve around the point
Z,. We take the solution form for generalized line dislocation
b? and generalized line force f® be applied at a point Z; in

an infinite homogeneous medium as
f,(z,) =<log(z, — z,,) > P (18)
Where
<log(z, - z,,) >=diag[log(z, - z,,), 109(z, - z,,), 109(z, - 2,,), 109(z, —7,,)]
Substituting Eq. (18) into Eq. (17), it is found
27[iAp+iAp]=b® (19)
27iBp+iBp]=f" (20)
with the aid of Eq. (13), the following relation can be obtained

p=—1 (AF® +BbP) (21)
27l

4. Force, charge and dislocation interacting with
a semi-infinite crack

Consider a semi-infinite mechanically free and electrically
open interfacial crack between two bonded dissimilar
piezoelectric anisotropic materials. A generalized line
dislocation and the generalized line force are applied at a point
Z, in lower half-space. Assume the perfect bonding interface
along the positive direction of the X, -axis and the semi-infinite
crack along the negative direction of the X;-axis (see Fig. 1).
The boundary conditions for the current problem are assumed to

be written as
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{ua % along L (22)
¢a = ¢b g i

¢a(zk) = 0

{‘ba(zk) o along L. (23)

Material b
Qb

Fig. 1 A singularity in a bimaterial containing a semi-infinite
interfacial crack
In some specific boundary conditions, the corresponding

points Z, (k=1,2,3,4) of the boundary can be translated into an

AF()+ A = A +AL(S)
B.f(¢) +B.f(S) =B,f() +Byf(<) .

B.f(¢)+B.f(¢)=0
B,f(¢)+B,f(¢)=0,

&

Material a
Sa
L.

LB 51‘

>

L b
(10, $20)
Material b

Sy

Fig. 2 A singularity in a bimaterial containing a semi-infinite
interfacial crack in the mapped plane
Since it is difficult to satisfy both boundary conditions at
the same time, the method of analytical continuation should be

applied to two boundaries alternatively. First, two perturbed

along &, axis (€ + ¢ =0)

identical points, e.g. on the x;-axis or an unit circle, and as a
result the boundary equation can be reduced to that containing
one variable. In this problem all boundary are along the x;-axis,

the boundary conditions Egs. (22) and (23) can be rewritten as

Af(2)+AF(2)=Af(2) + Af(2)

_ (24)
B,f(z)+B,f(z) =B,f(z) +B,f(z) , zel,
B.f(z)+B,f(z)=0
J£(2)+B.f(2) (25)
B,f(z)+B,f(z)=0, zel,
Introduce a mapping function:
¢=7'"? (26)

which maps the boundary of crack in z-plane into the
imaginary axis in the ¢ -plane (Fig. 2). Fortunately, The
points of two material along the bonded interface in z-plane still
identical in the ¢ -plane. The boundary conditions in ¢ -plane

are written as

_ _ @7)
along & axis (§— ¢ =0)

(28)

holomorphic functions i (&) and T (i) are introduced to
satisfy the continuous conditions of interface Lg. The complex

potentials for current problem can be expressed as

f(é,k):{faf(gk) ges, 29)
for (C1) +16(&0) ges,

where S,, the upper half-space, and S, the lower half-space, are
occupied by material a and b, respectively, f,(S}) represents
the solution of a singularity in a homogeneous medium, in which
the piezoelectric material constants of material b are implied in
f,(<,) . The continuity of mechanical displacement and electric
potential across the interface with Eq. (27-1), by analytical

continuation arguments, is used to yield

{Aafaf (©) - Ay () -AS (&) =0 Ces,
(30)

Kaa(;)_Abfbf (C)—Khﬁ(§)=0 ges,

The continuity of traction and electric displacement with Eq.

uli



MR2HR HTHE F—H RE-OtHE 5

(27-2), by the same arguments, results in

B = (E;le _X:Abyl (K:Kb _E:Eb) (33)

B.f, (&) —Bofy ()~ By f,(£) =0 ges, (31) Secondly, two perturbed functions f,.(S,) and f,,(S,)
Baf, (&) —Byfy (&) —Bur f,(¢) =0 ges, which are holomorphic in regions S, and S, are added to satisfy
the mechanically free and electrically open surface Lc. The
From Egs. (30) and (31), we have complex potentials can be expressed as
{faf (€)= 0,5,(S) 32) . £ (G + (&) Ces,
=B_f. = 34
(0 =Bufu(€) ST @) ) ces, &
where The boundary condition of mechanically free and
o, = (K?Aa _Enga)_l (K;l A, _ﬁngb) (32) electrically open crack surface, Eq. (28), is expressed as
Bafaf (é/) + Bafaf (é/) + Bafah (é’) + Bafah (é,) = 0 é’ € LC (35)
Byfo (&) + By (&) + Byfi (&) + Bypfyr () + Byfy (6) + By () =0 gele
The analytical continuation arguments and the property, —
- . . . . fafl(g) = Yafo(_g)
¢ =—¢, held along the imaginary axis are used to yield (37)
fi1(S) = 1ufo (=)
f (&) =-B.'Batanfy (=) 36)
fin (&) = =B, Bofy () — B, BoBouf (—¢) where
=—a,B,'Bs +B;'Baoa 38
Similarity, the fields produced by T.,(¢.) and Ty (<) Ta = 0By B0 T By Balad (38)
can not satisfy the continuity conditions at Lg. Two perturbed v, =P hﬁngb +Bgl]_3bl_3 X (39)

functions f.1(Sk) and fy1(Sk) are added to satisfy the
continuity conditions at Lg. The analytical continuation
arguments and the property, ¢ = E held along the real axis are

used to yield

By repeating the previous steps, one can get the other
perturbed terms to satisfy both boundary conditions. In the
following numerical calculation, we prove that the complex
potentials derived as Eq. (40) are well satisfied with the

boundary conditions.

0,y <100({/Z, ~\[2,0) > P~ B,'Baty, <109(—z, ~V/Z0)) > b +7, <10g(~\7, ~Vzi0)) > p

f(zk):

<10g(y/2, ~20) > P+ By <100(2, ~\70) > p— B, Bo <log(~7, ~\/7x0)) > p

Ces,
(40)

B, BBy, <100(—/2, —\/210) > P+ 7, <10g(~2, —\[2,0)) > p ¢

For the special case that material a and material b are the
same, (o, =1, B,, =0), Eq. (40) reduces to an exact solution
of the corresponding problem of a line dislocation interacting

with a semi-infinite crack.
f(z,) =<Iogly/z, ~J2)>p-B B<logl-{7 ) >p (41)

which is in agreement with the result of Chen et al. (2004).

4.1. Generalized stress fields

The generalized stress fields can be obtained from Egs. (14)
and (15) as

uli
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Py Py =
Re[B.a Ba al +B —_—
G, = \/— [B.a,, < \/— \/—>P Oy < Zk+\/£>P a¥a < Zk+\/£>P]
geq,
-1 Py - 42)
Re[B, +B > B =
Gy, = \/— [ <\/— \/—)>p o < \/— \/Z p b<\/z+\/a>p
BB <P P
BbBab<\/Z+\/a)>p+Bbe<\/Z+\/a)>p G e,
0, = 1 Re[B,a,, < >p-— Ba(lab< ! >p+By ;_>1_)]
«/ \} \} ‘fzk ++ ko 2, + 2o
ceQ,
1 1 - (43)
Re[B, B Bo<—=
Oy = \/— e[ <\/— \/—)>p+ oBay < \/— \/E?>p b < Zk+\/z>p
g e,

—BoB,, <m)>l’+3b“{b <m) >p

4.2. Generalized stress intensity factors

Equations (42) and (43) show that the electro-elastic fields near the crack tip exhibit the \/Z singularity. The generalized stress
intensity factors is defined as
t
K= [K,,, K, Ko ] = I|m4/27zx [C21r C22s Opar D, ] (44)

Xl—)

, it can be calculated as

-1 1 1 -
K =27 Re[B,a,, < —— >p—Baa,, <——=—>p+B,y, <——>p] (45)
\/Zko Zko

Zxo

or
1 - — 1 _
K =27 Re[B, < )>p+Bb|3ab —=—>p-Bo<—=—>p
\/ Zxo Zko Zko
o 1 1 (46)
—BoB,, < _,—) >p+Byy, < _h) >p
ZkO ZkO
4.3. Image force on a piezoelectric dislocation where o7, and D are the perturbation stresses and electric

displacement components at the dislocation.
The image force is defined as the negative gradient of the

interaction energy with respect to the position change of the
dislocation, which is an important physical quantity for
understanding the interacting of a dislocation and interfaces. The
image force can be calculated by means of the generalized
Peach-Koehler formula by Pak (1990) and Ting and Barnett
(1993).

F,=b,05, +b,0), +b 05, + b, D,

(47)
Fx2 = _(bxlo-irl + bxzasz + bXSO-I3 + b(pD:I-_r)

Ul
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[O'lev UzTZIO'szl DzT I'= \/— Re[BbBab \/— > p By < —
\/_ Zxo

Py

>P
zk+\/z

(48)

_ —k —k
BbBab<\/Z+\/a)>p+Bb"{b<\/Z+\/a)>p

-1
[O'lTlvo'szno'lTerlT]' :ﬁRe[BbBab \/_ \/Z>p Bb<\/_+\/;>p

(49)

RrRAR Py k
BbBab<\/Z+\/a)>p+Bbe<\/Z+\/a)>p

5. Numerical results and discussion

For transversely isotropic piezoelectric materials can be
1992). The type | roots Py
(k=1, 2,3,4) are all purely imaginary. Of the type Il, two roots

classified into two types (Suo et al.,

(P; and p,) are purely imaginary and the other two (P, and

PZT-6B:
¢, =168GNm™?, c¢,, =163GNm™?, ¢, =27.1GNm?,
e, =-0.9Cm?, e, =7.1Cm? e,=46Cm?

1, =3.6x10°CV'm™, g,=34x10°CV 'm™*

Cadmium selenide:

¢, = 74.1GNm?,
e, =—0.16Cm~,

C,, =83.6GNm?,
e,, =0.347Cm?,

., =82.6x10CV'm™, ¢, =90.3x10*CV 'm™

PZT-4:
¢, =139GNm?, ¢,, =113GNm?, ¢, =25.6GNm?,
e, =—6.98Cm~, e, =13.84Cm?, e, =13.44Cm™

L, =6x10°CV'm™, g, =547 x10°CV 'm™

PZT-5H:
¢, =126GNm?, c,, =117GNm™, ¢, =35.3GNm~,
e, =—-6.5Cm?, e, =233Cm?, g,=17Cm>

£, =151x10°CV'm?, £, =13x10°CV'm™,

Ces =13.2GNm 2,
e, =-0.138Cm™

P, ) have non-zero real parts but with equal imaginary parts. In
the follows, we choice two type | piezoelectric materials
(PZT-6B and Cadmium selenide) and two type Il piezoelectric
materials (PZT-4 and PZT-5H) for the numerical discussion. The

material properties are listed as follows

¢, =60GNm™?, ¢, =60GNm?,

¢, =39.3GNm?,

C, =45.2GNm™,

¢, = 74.3GNm?,

Ci =77.8GNm~?,

¢, =53GNm™, ¢, =55GNm?,
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Fig. 3 The distribution of shear stress o, along X -axis
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Fig. 4 The distribution of normal stress o,, along X, -axis
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Fig. 5 The distribution of normal stress o&,; along X, -axis
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0.04 v % =0 v 1
. ® x,=0"
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8 if
= i
50021 I .
0.04f 1
0.06 1 ]
-0.08 ‘ ‘ ‘
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0
X, /'h
Fig. 6 The distribution of electric displacement D, along
X, -axis

Consider a piezoelectric bi-material containing a
semi-infinite interfacial crack and is subjected to a line force
f?=[0,—f,,0,0]' at the point Z,=(3—i)h . The lower
half-plane, €2, , is assumed to be PZT-4 and the upper
half-plane, €2,, may be PZT-5H, PZT-6B or Cadmium selenid.
Figures 3-6 show the distributions of generalized interfacial
stresses of material a and b along the boundary X, =0. From
these figures we can find that the shear stress 0,1 ,0,, normal
stress o0, and normal electric displacement D, are
continuous across the interface and they all vanish along the
crack surface. These results prove that the derived solutions are
well satisfied with the boundary conditions. Furthermore, one
can find the generalized interfacial stresses increase dramatically

at the crack tip and increase gradually near the applied load.

0.05

Fig. 7 The distribution of stress intensity factor K
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Fig. 8 The distribution of stress intensity factor K,
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Fig. 9 The distribution of stress intensity factor K,, Ky
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Fig. 10 The distribution of electric displacement intensity

factor

The distributions of generalized stress intensity factors
due to the line force applied at the point Z, = X, —ih are plotted
in Figs. 7-10, respectively. One can find that the applied load
may produce positive or negative generalized stress intensity
factors. When the generalized stress intensity factors produced
by the line force are positive, it exhibits anti-shielding effect
since the generalized stress intensity factors are added to those
produced by the far-field loading. On the other hand, when the
stress intensity factors produced by the line force are negative, it
exhibits shielding effect since the generalized stress intensity
factors are subtracted from those produced by the far-field
loading. The magnitudes of the generalized stress intensity
factors reach a peak value when the line force is applied near the
crack tip. Figs. 11-12 show the distribution of image forces on
a dislocation with the Burger vector b” =[0,h,,0,0] located at
the point Z;=X—ih . The negative image force F,
represents the force will attract the dislocation to the cracked
side. The positive image force F,, represents the force will
attract the dislocation to the interface and the negative image
force F,, represents the force will repel the dislocation to the
interface. In general, the interface will attract the dislocation
when the dislocation locates in one region which is combined
with a softer material or a free surface. Oppositely, the interface
repels the dislocation when the region is bonded with a harder or

rigid material.

-0.031

-0.041

Fuh/(Ces)sy’

0.051

0.061

-0.071

-0.08 ; ; ;
-10 -5 0 5 10

Fig. 11 Dimensionless image forces F vs. the position of a

dislocation
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0.07
0.06} _ "\ 1
Q,:pzT-6B — —— - | -
005} PZT-5H -weeoeeeeeeeees o 1
004} o .

0.031 , -
/A S
0.02f AN |
P

szh (C45)s bo2

002} o T 1

003 s s s
-10 -5 0 5 10
Fig. 12 Dimensionless image force F, vs. the position of a

dislocation

6. Conclusions

The alternating technique and the method of analytical
continuation are employed to study the singularities in an
anisotropic piezoelectric bonded bi-material containing a
semi-infinite interfacial crack. The numerical results prove that
the derived solutions are satisfied with the continuity condition
at the bonded interface and the mechanically free and
electrically open conditions at the crack surface. Then the
anti-shielding and shielding effects for loadings and material
combinations are discussed. The image forces exerted on a
dislocation due to interfaces are estimated by means of the
Peach-Koehler formula, which play an important role in the
motion of dislocation. Numerical results show that the interfaces

will attract the dislocation when the dislocation locates in one

region which is combined with a softer material or a free surface.

Oppositely, the interface repels the dislocation when the region

is bonded with a harder or rigid material.
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