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Abstract 

The interaction between a singularity and a semi-infinite interfacial crack in a piezoelectric 

bimaterial is studied using the extended Stroh formalism. The singularity considered here 

involves a line dislocation, a line force and a line charge. The crack surface is assumed to be 

mechanically free and electrically open. Based on the methods of mapping function, analytical 

continuation in conjunction with alternating technique, the complex potentials are derived in 

each medium of the anisotropic piezoelectric bimaterial. The generalized stress fields, 

generalized stress intensity factors and the image forces exerted on the dislocation are given 

explicitly. Numerical results demonstrate that the boundary conditions at the interface and the 

crack surface are satisfied. They also show the effects of the singularity and material 

combination on the generalized stress fields, generalized stress intensity factors and the image 

forces. 
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1. Introduction 

Due to the intrinsic electro-mechanical coupling behavior, 

piezoelectric materials such as ferroelectric ceramics can be 

widely used in modern device. These piezoelectric ceramics are 

brittle and in the manufacturing process easily produce 

micro-defects, such as dislocations, cracks, voids, etc. The 

existences defects induce high stress concentrations, which may 

greatly influence the performance of piezoelectric devices. The 

fundamental solutions for a dislocation and a concentrated force 

are significant since the dislocation solutions can be served as 

kernel functions for general crack and void problems. Barnett 

and Lothe (1975) extended the six-dimensional Stroh formalism 

to eight-dimensional formalism for solving the problem of a line 

dislocation and a line charge in anisotropic piezoelectric 

materials. Pak (1992) analyzed the piezoelectric cracks by a 
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distributed dislocation method. Meguid and Deng (1998) 

analyzed the problem of a screw dislocation interacting with an 

inhomogeneity in piezoelectric materials. Chung and Ting 

(1996), Liu et al. (1997) Hung and Kuang (2001) and Zhou et al. 

(2005) conducted an analysis on a line force and a line 

dislocation in anisotropic piezoelectric materials with an elliptic 

hole, crack or elliptic inhomogeneity etc. Lee et al. (2000) 

discussed the interaction between a semi-infinite crack and a 

screw dislocation under anti-plane mechanical and in-plane 

electrical loadings. Chen et al. (2002 ) studied a piezoelectric 

screw dislocation near a semi-infinite wedge crack. Chen et al. 

(2004) solved the problem of a line dislocation interacting with a 

semi-infinite crack in a piezoelectric solid. Yang et al (2007, 

2008) used the dislocation solution to formulate the singular 

integral equations for solving the problem of a crack in a 

half-plane piezoelectric solid and the problem of an infinite 

sequence of parallel cracks in an infinite piezoelectric solid. 

In piezoelectric composites, cracks usually propagate along 

the interface. The investigation of the problem involving 

interface cracks between two bonded dissimilar piezoelectric 

materials has attracted increasing attention. Suo et al. (1992) 

examined the problem of an interface crack between dissimilar 

anisotropic piezoelectric media and the dependence of 

singularities at the tips of an interface crack with respect to 

different electrical conditions. A circular-arc crack at the 

interface of a circular piezoelectric inclusion and a piezoelectric 

matrix under anti-plane shear and in-plane electric loading was 

considered by Zhong and Meguid (1997) and Deng and Meguid 

(1999), who derived complex series solution and closed-form 

solution, respectively. Wang and Shen (2002) give a general 

treatment on various interface defects at anisotropic 

piezoelectric bi-material interface. Gao et. al. (2004) presented 

the solutions for the problem of periodic interfacial cracks in two 

dissimilar piezoelectric materials. Hao and Liu (2006) 

investigated the interaction between a screw dislocation and a 

semi-infinite interfacial crack in a transversely isotropic 

magnetoelectro-elastic bi-material. The dislocation line is 

perpendicular to the isotropic basal plane of the bi-material. In 

the present paper, we investigate the plane problems for a line 

force, charge and dislocation interacting with a semi-infinite 

interfacial crack in anisotropic bi-materials. The analytical 

derivation is based on the extended Stroh formalism, conformal 

mapping and the analytical continuation technique which is 

alternatively applied across the bounded interface and crack 

surface. 

2. Basic equations for two-dimensional 

piezoelectric problem 

In a fixed rectangular coordinates system (x1, x2, x3), the 

basic equations for linear piezoelectric materials can be written 

as 

, 0ij j                                       (1) 

, 0i iD                                       (2) 

, ,

1
( )

2
ij i j j iu u                                (3) 

,i iE                                        (4) 

ij ijkl kl kij jc e E                           (5) 

i ikl kl ik kD e E                               (6) 

where repeated Latin indices mean summation and a comma 

stands for partial differentiation. ijklc , kije  and ik  are the 

corresponding elastic, piezoelectric and dielectric constants. 
ij , 

iu , 
iD ,  , 

ij  and 
iE  are stress, displacement, electric 

displacement, electric potential, strain and electric field, 

respectively. For two-dimensional problems in which all the 

variables depend on x1 and x2 only, following Suo et al. (1992), 

Chung and Ting (1996) and Zhou et al. (2005), the general 

solution is obtained by the linear combination of four complex 

analytical functions 

( ) ( )k kz z u Af Af                         (7) 

( ) ( )k kz z Bf Bf                         (8) 

where 

1 2 3[ , , , ]tu u u u   

1 2 3 4[ , , , ]t      

1 1 2 2 3 3 4 4 1 2( ) [ ( ), ( ), ( ), ( )] , , 1,2,3,4t

k k kz f z f z f z f z z x p x k   f  

In which i  are the generalized stress functions, A and B are 

4 4  complex matrices related to the material constants, 

expressed as 

1 2 3 4[ , , , ]A a a a a                             (9) 
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1 2 3 4[ , , , ]B b b b b                              (10) 

The eigenvalues kp  and eigenvectors ka  are determined by 

the following equations 

2[ ( ) ] 0t p p   Q R R T a                   (11) 

where 

1111 1121 1131 121 11 16 15 11

1211 1221 1231 121 16 66 56 16

1311 1321 1331 131 15 56 55 15

111 121 131 11 11 16 15 11

c c c e c c c e

c c c e c c c e

c c c e c c c e

e e e e e e 

   
   
    
   
   

       

Q  

1112 1122 1132 211 16 12 14 21

1212 1222 1232 221 66 26 46 26

1312 1322 1332 231 56 25 45 25

112 122 132 12 16 12 14 12

c c c e c c c e

c c c e c c c e

c c c e c c c e

e e e e e e 

   
   
    
   
   

       

R  

 

2112 2122 2132 212 66 26 46 26

2212 2222 2232 222 26 22 24 22

2312 2322 2332 232 46 24 44 24

212 222 232 22 26 22 24 22

c c c e c c c e

c c c e c c c e

c c c e c c c e

e e e e e e 

   
   
    
   
   

       

T  

and the eigenvectors kb  can be obtained as 

1
( ) ( )t

k k k k k

k

p p
p

    b R T a Q R a        (12) 

After the normalization for eigenvectors A and B, the following 

relation can be obtained 

0

0

t t

t t

     
     
      

B A A A I

IB BB A
                  (13) 

The generalized stresses can be represented as 

1 11 12 13 1 1,2 2,2 3,2 4,2[ , , , ] [ , , , ]t tD        σ  (14) 

2 21 22 23 2 1,1 2,1 3,1 4,1[ , , , ] [ , , , ]t tD       σ  (15) 

If the traction and the normal component of electric 

displacement nD  are given on the boundary, the corresponding 

boundary condition can be expressed as 

1 2 3( ) ( ) ( ) , [ , , , ]t

k k k n
s

z z z ds t t t D   Bf Bf t t  (16) 

where kt  (k=1,2,3) are the components of surface traction. 

3. A singularity in a homogeneous medium 

In the previous section, it was shown that a general solution 

for a generalized two-dimensional piezoelectric problem can be 

expressed by four complex analytical functions ( )kzf . Now we 

examine the solution 0( )kzf  of a singularity in a homogeneous 

medium. Let the generalized line dislocation p
b  and the 

generalized line force p
f  be applied at a point 0z , where 

1 2 3[ , ] [ , , , ]p t t t

x x xb b b b b  b b , b  represents Burgers vector 

and b  represents an electric potential jump across the slip 

plane, and 1 2 3[ , ] [ , , , ]p t t t

x x xq f f f q f f , f  represents a line 

force and q  represents a line charge. The equilibrium 

conditions of the force and the single-valued conditions of the 

generalized displacement are 

,p p

c c
d d  f u b                   (17) 

where c represents an arbitrary closed curve around the point 

0z . We take the solution form for generalized line dislocation 

p
b  and generalized line force p

f  be applied at a point 0z  in 

an infinite homogeneous medium as 

0 0( ) log( )k k kz z z  f p                   (18) 

Where 

0 1 10 2 20 3 30 4 40log( ) [log( ),  log( ),  log( ),  log( )]k kz z diag z z z z z z z z        

Substituting Eq. (18) into Eq. (17), it is found 

2 [ ] pi i  Ap Ap b                        (19) 

2 [ ] pi i  Bp Bp f                        (20) 

with the aid of Eq. (13), the following relation can be obtained 

1
( )

2

t p t p

i
 p A f B b                        (21) 

4. Force, charge and dislocation interacting with 

a semi-infinite crack 

Consider a semi-infinite mechanically free and electrically 

open interfacial crack between two bonded dissimilar 

piezoelectric anisotropic materials. A generalized line 

dislocation and the generalized line force are applied at a point 

0z  in lower half-space. Assume the perfect bonding interface 

along the positive direction of the 1x -axis and the semi-infinite 

crack along the negative direction of the 1x -axis (see Fig. 1). 

The boundary conditions for the current problem are assumed to 

be written as 
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a b

B

 a  b

    along L





u u

 
                       (22) 

( )

( )

 a k

C

 a k

z
    along   L

z






0

0




                       (23) 

Material a

Material b

CI BI

2x

1x

10,  20( )x x

,  p p
f b

a

b

 

Fig. 1 A singularity in a bimaterial containing a semi-infinite 

interfacial crack 

In some specific boundary conditions, the corresponding 

points kz  (k=1,2,3,4) of the boundary can be translated into an 

identical points, e.g. on the x1-axis or an unit circle, and as a 

result the boundary equation can be reduced to that containing 

one variable. In this problem all boundary are along the x1-axis, 

the boundary conditions Eqs. (22) and (23) can be rewritten as 

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )  ,                     

a a b b

a a b b B

z z z z

z z z z z I

  

   

A f A f A f A f

B f B f B f B f
 (24) 

( ) ( )

( ) ( )  ,                                             

a a

b b C

z z

z z z I

 

  

B f B f 0

B f B f 0
 (25) 

Introduce a mapping function: 

1/ 2=z                                    (26) 

which maps the boundary of crack in z-plane into the 

imaginary axis in the  -plane (Fig. 2).  Fortunately, The 

points of two material along the bonded interface in z-plane still 

identical in the  -plane. The boundary conditions in  -plane 

are written as 

 

1

( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ,          along   axis (  0)

a a b b

a a b b

   

      

  

    

A f A f A f A f

B f B f B f B f
            (27) 

2

( ) ( )

( ) ( )  ,                                  along   axis (  0) 

a a

b b

 

    

 

   

B f B f 0

B f B f 0
            (28) 

aS

bS

Material a

Material b

2

1

10,  20( ) 

,  p p
f b

CL

BL

 

Fig. 2 A singularity in a bimaterial containing a semi-infinite 

interfacial crack in the mapped plane 

Since it is difficult to satisfy both boundary conditions at 

the same time, the method of analytical continuation should be 

applied to two boundaries alternatively. First, two perturbed 

holomorphic functions ( )af kf  and ( )bf kf  are introduced to 

satisfy the continuous conditions of interface LB. The complex 

potentials for current problem can be expressed as 

0

( )
( )

( ) ( )

af k a

k

bf k k b

S

S

 


  


 

 

f
f

f f
       (29) 

where Sa, the upper half-space, and Sb , the lower half-space, are 

occupied by material a and b, respectively, 0( )kf  represents 

the solution of a singularity in a homogeneous medium, in which 

the piezoelectric material constants of material b are implied in 

0( )kf . The continuity of mechanical displacement and electric 

potential across the interface with Eq. (27-1), by analytical 

continuation arguments, is used to yield 

0

0

( ) ( ) ( ) 0

( ) ( ) ( ) 0

ba af bf b a

a baf b bf b

S

S

   

   

    


   

A f A f A f

A f A f A f
 (30) 

The continuity of traction and electric displacement with Eq. 
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(27-2), by the same arguments, results in 

0

0

( ) ( ) ( ) 0

( ) ( ) ( ) 0

ba af bf bf a

a bfaf b bf b

S

S

   

   

    


   

B f B f B f

B f B f B f
 (31) 

From Eqs. (30) and (31), we have 

0

0

( ) ( )

( ) ( )

af ab

bf ab

 

 






f α f

f β f
                       (32) 

where 

1 1 1 1
1( ) ( )b b b bab a a b b

   
  α A A B B A A B B        (32) 

1 1 1 1
1( ) ( )a a a b a bab b b

   
  β B B A A A A B B        (33) 

Secondly, two perturbed functions ( )ah kf  and ( )bh kf  

which are holomorphic in regions Sa and Sb are added to satisfy 

the mechanically free and electrically open surface LC. The 

complex potentials can be expressed as 

0

( ) ( )                      
( )

( ) ( ) ( )

af k ah k a

k

bf k k bh k b

S

S

  


   

 
 

  

f f
f

f f f
 (34) 

The boundary condition of mechanically free and 

electrically open crack surface, Eq. (28), is expressed as 

0 0

( ) ( ) ( ) ( ) 0

( ) ( ) ( ) ( ) ( ) ( ) 0

a af a af a ah a ah C

b b b bf b bf b bh b bh C

                                L

L

    

      

     


      

B f B f B f B f

B f B f B f B f B f B f
       (35) 

The analytical continuation arguments and the property, 

   , held along the imaginary axis are used to yield 

1

0

1 1

0 0

( ) ( ) 

( ) ( ) ( )

a abah a k

b bbh b k b ab k

 

  



 

  

    

f B B α f

f B B f B B β f
    (36) 

Similarity, the fields produced by  ( )ah kf  and ( )bh kf  

can not satisfy the continuity conditions at LB. Two perturbed 

functions 1( )af kf  and 1( )bf kf  are added to satisfy the 

continuity conditions at LB. The analytical continuation 

arguments and the property,   , held along the real axis are 

used to yield 

1 0

1 0

( ) ( )

( ) ( )

af a

bf b

 

 

  


 

f γ f

f γ f
                         (37) 

where 

1 1
b a aba ab b a

   γ α B B B B α                   (38) 

1 1
b bb ab b b ab

   γ β B B B B β                   (39) 

By repeating the previous steps, one can get the other 

perturbed terms to satisfy both boundary conditions. In the 

following numerical calculation, we prove that the complex 

potentials derived as Eq. (40) are well satisfied with the 

boundary conditions. 

1
0 00log( ) log( )) log( ))

                                                                                                                                    
( )

a k kab k k a ab k a k

k

z z z z z z

z

            



α p B B α p γ p

f
1

0 00

1

0 0

log( ) log( ) log( ))

log( ) log( ))                                    

a

k b kk k ab k b k

bb ab k k b k k b

S

z z z z z z

z z z z S














           

          

p β p B B p

B B β p γ p

        (40) 

For the special case that material a and material b are the 

same, ( ab α I , ab β 0 ), Eq. (40) reduces to an exact solution 

of the corresponding problem of a line dislocation interacting 

with a semi-infinite crack. 

1
00( ) log( ) log( ))kk k k kz z z z z       f p B B p  (41) 

which is in agreement with the result of Chen et al. (2004). 

4.1. Generalized stress fields 

The generalized stress fields can be obtained from Eqs. (14) 

and (15) as 
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1

0 00

1

1
Re[ ]

                                                                                                                                  

k k k
aa a ab ab a a

k kk k k k k

a

b

p p p

z z z z z z z




        

  






σ B α p B α p B γ p

σ
0 00

0 0

1
Re[ )

) )                                                    

k k k
bb b ab

k kk k k k k

k k
b ab b b b

k k k k

p p p

z z z z z z z

p p

z z z z


       
  

      
 

B p B β p B p

B β p B γ p

       (42) 

2

0 00

2

1 1 1 1
Re[ ]

                                                                                                                                

1
Re[

aa a ab ab a a

k kk k k k k

a

b

k

z z z z z z z

z



        
  





σ B α p B α p B γ p

σ B
0 00

0 0

1 1 1
)

1 1
) )                                                   

bb b ab

k kk k k k

b ab b b b

k k k k

z z z z z z

z z z z


       
  

      
 

p B β p B p

B β p B γ p

       (43) 

4.2. Generalized stress intensity factors 

Equations (42) and (43) show that the electro-elastic fields near the crack tip exhibit the kz  singularity. The generalized stress 

intensity factors is defined as 

 
2

1

2

1 21 22 23 2
0

0

, , , lim 2 , , ,  
t t

II I III D
x
x

K K K K x D   



   K            (44) 

, it can be calculated as 

0 00

1 1 1
2 Re[ ]aa ab ab a a

k kkz z z



        K B α p B α p B γ p  (45) 

or 

0 00

0 0

1 1 1
2 Re[ )

1 1
) )                              

bb b ab

k kk

b ab b b

k k

z z z

z z


 

        

     

K B p B β p B p

B β p B γ p

               (46) 

4.3. Image force on a piezoelectric dislocation 

The image force is defined as the negative gradient of the 

interaction energy with respect to the position change of the 

dislocation, which is an important physical quantity for 

understanding the interacting of a dislocation and interfaces. The 

image force can be calculated by means of the generalized 

Peach-Koehler formula by Pak (1990) and Ting and Barnett 

(1993). 

1 1 21 2 22 3 23 2

2 1 11 2 12 3 13 1( )

T T T T

x x x x

T T T T

x x x x

F b b b b D

F b b b b D





  

  

   

    
         (47) 

where T

ij , and T

iD  are the perturbation stresses and electric 

displacement components at the dislocation. 
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5. Numerical results and discussion 

For transversely isotropic piezoelectric materials can be 

classified into two types (Suo et al., 1992). The type I roots kp  

(k=1, 2,3,4) are all purely imaginary. Of the type II, two roots 

( 3p  and 4p ) are purely imaginary and the other two ( 1p  and 

2p ) have non-zero real parts but with equal imaginary parts. In 

the follows, we choice two type I piezoelectric materials 

(PZT-6B and Cadmium selenide) and two type II piezoelectric 

materials (PZT-4 and PZT-5H) for the numerical discussion. The 

material properties are listed as follows 

PZT-6B: 

2 2 2 2 2

11 22 66 12 13168 , 163 , 27.1 , 60 , 60c GNm c GNm c GNm c GNm c GNm         ,  

2 2 2

21 22 160.9 , 7.1 , 4.6e Cm e Cm e Cm       

9 1 1 9 1 1

11 223.6 10 , 3.4 10CV m CV m           

Cadmium selenide: 

2 2 2 2 2

11 22 66 12 1374.1 , 83.6 , 13.2 , 39.3 , 45.2c GNm c GNm c GNm c GNm c GNm         ,  

2 2 2

21 22 160.16 , 0.347 , 0.138e Cm e Cm e Cm        

12 1 1 12 1 1

11 2282.6 10 , 90.3 10CV m CV m           

PZT-4: 

2 2 2 2 2

11 22 66 12 13139 , 113 , 25.6 , 74.3 , 77.8c GNm c GNm c GNm c GNm c GNm         ,  

2 2 2

21 22 166.98 , 13.84 , 13.44e Cm e Cm e Cm       

9 1 1 9 1 1

11 226 10 , 5.47 10CV m CV m           

PZT-5H: 

2 2 2 2 2

11 22 66 12 13126 , 117 , 35.3 , 53 , 55c GNm c GNm c GNm c GNm c GNm         ,  

2 2 2

21 22 166.5 , 23.3 , 17e Cm e Cm e Cm       

9 1 1 9 1 1

11 2215.1 10 , 13 10CV m CV m          .
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Fig. 3 The distribution of shear stress 21  along 1x -axis 
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Fig. 4 The distribution of normal stress 22  along 1x -axis 
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Fig. 5 The distribution of normal stress 23  along 1x -axis 
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Fig. 6 The distribution of electric displacement 2D  along 

1x -axis 

 

Consider a piezoelectric bi-material containing a 

semi-infinite interfacial crack and is subjected to a line force 

0[0, ,0,0]p tf f  at the point 0 (3 )z i h  . The lower 

half-plane, b , is assumed to be PZT-4 and the upper 

half-plane, a , may be PZT-5H, PZT-6B or Cadmium selenid. 

Figures 3-6 show the distributions of generalized interfacial 

stresses of material a and b along the boundary 2 0x  . From 

these figures we can find that the shear stress 2,1 , 23 , normal 

stress 22  and normal electric displacement 2D  are 

continuous across the interface and they all vanish along the 

crack surface. These results prove that the derived solutions are 

well satisfied with the boundary conditions. Furthermore, one 

can find the generalized interfacial stresses increase dramatically 

at the crack tip and increase gradually near the applied load. 
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Fig. 7 The distribution of stress intensity factor IIK  



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

南開學報 第十五卷 第一期 民國一○七年 9 

-10 -5 0 5 10
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

1 /x h

0
/

I
K

h
f

PZT-4:b

:a PZT-6B

PZT-5H

CdSe

 

Fig. 8 The distribution of stress intensity factor IK  

 

-10 -5 0 5 10
0

0.5

1

1.5

2

2.5

x 10
-10

1 /x h

0
/

II
I

K
h

f PZT-4:b

:a PZT-6B

PZT-5H

CdSe

 

Fig. 9 The distribution of stress intensity factor IIIK  DK  
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Fig. 10 The distribution of electric displacement intensity 

factor 

 

 

 The distributions of generalized stress intensity factors 

due to the line force applied at the point 0 1z x ih  are plotted 

in Figs. 7-10, respectively. One can find that the applied load 

may produce positive or negative generalized stress intensity 

factors. When the generalized stress intensity factors produced 

by the line force are positive, it exhibits anti-shielding effect 

since the generalized stress intensity factors are added to those 

produced by the far-field loading. On the other hand, when the 

stress intensity factors produced by the line force are negative, it 

exhibits shielding effect since the generalized stress intensity 

factors are subtracted from those produced by the far-field 

loading. The magnitudes of the generalized stress intensity 

factors reach a peak value when the line force is applied near the 

crack tip.  Figs. 11-12 show the distribution of image forces on 

a dislocation with the Burger vector 0[0, ,0,0]p tbb located at 

the point 0 1z x ih  . The negative image force 1xF  

represents the force will attract the dislocation to the cracked 

side. The positive image force 2xF  represents the force will 

attract the dislocation to the interface and the negative image 

force 2xF  represents the force will repel the dislocation to the 

interface. In general, the interface will attract the dislocation 

when the dislocation locates in one region which is combined 

with a softer material or a free surface. Oppositely, the interface 

repels the dislocation when the region is bonded with a harder or 

rigid material. 
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Fig. 11 Dimensionless image forces 
1xF  vs. the position of a 

dislocation 
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Fig. 12 Dimensionless image force 
2xF  vs. the position of a 

dislocation 

6. Conclusions 

The alternating technique and the method of analytical 

continuation are employed to study the singularities in an 

anisotropic piezoelectric bonded bi-material containing a 

semi-infinite interfacial crack. The numerical results prove that 

the derived solutions are satisfied with the continuity condition 

at the bonded interface and the mechanically free and 

electrically open conditions at the crack surface. Then the 

anti-shielding and shielding effects for loadings and material 

combinations are discussed. The image forces exerted on a 

dislocation due to interfaces are estimated by means of the 

Peach-Koehler formula, which play an important role in the 

motion of dislocation. Numerical results show that the interfaces 

will attract the dislocation when the dislocation locates in one 

region which is combined with a softer material or a free surface. 

Oppositely, the interface repels the dislocation when the region 

is bonded with a harder or rigid material. 
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奇異點負荷與含半無窮界面裂紋壓電雙材料之 

交互作用解析研究 

沈明河 1、洪仕育 1、陳世濃 1
 

1南開科技大學 自動化工程系 

 

 

摘  要 

本論文應用延伸之史磋理論探討奇異點負荷與含半無限界面裂紋壓電雙材料之壓電

應力交互作用分析。論文所探討的奇異點負荷包括用具平面布格向量之刃狀差排，差排之

核心還具有不連續的電勢，集中力，集中電荷等。裂紋表面假設為無曳引力和電氣絕緣狀

態。藉由保角轉換函數，解析連續法與交互疊代法，可推導出壓電雙材料各層之壓電應力

函數之級數表示式。廣義應力場，廣義應力強度因子和施加在差排之映射力等可以數學方

程式明確表示出來，亦可以數值計算繪圖討論。數值計算結果證明在界面結合處及裂紋表

面上的邊界條件已完全符合。數值結果亦用來探討奇異點負荷與不同材料組成對於含半無

窮界面裂紋之壓電雙材料之廣義之應力函數及廣義之應力強度因子之影響。 

關鍵詞：差排、映射力、史磋公式、交替疊代法 

 

 

 

 


