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Abstract 

In this chapter, we apply the matrix-analytical approach to explore the 

performance measures of the drop and block probabilities of wireless cellular 

networks with guard channel reservation handoff scheme. We  apply the  

Markovian Arrival process (MAP)  to  model new call  and handoff call. We  

examine the bursty nature of handoff call drops by means of conditional statistics 

with respect to alternating block and non-block periods. Five related performance 

measures are derived from conditional statistics, including the long-term new call 

block and handoff call drop probabilities,  and the three short-term measures of 

average length of a block period and a non-block period, as well as the conditional 

handoff call drop probability during a block period. These performance measures 

greatly assist the guard channel reservation handoff mechanism in determining a 

proper threshold guard channel in the cell. Furthermore, we derive the handoff call 

drop probability from the short-term performance measures of average length of a 

block period and a non-block period, as well as the conditional handoff call drop 

probability during a block period. The results presented in this paper can provide 

guidelines for designing adaptive algorithms to adjust the threshold in the guard 

channel reservation handoff scheme.  

 

Key Words: handoff, Markovian Arrival process (MAP), drop probability 

 

摘  要 

本論文運用矩陣分析方法，以遺失機率來探索無線蜂巢網絡切換程序的性

能。通話的模式以馬可夫到達程序模擬，對突發的切換資料遺失的探討，是以

交替性的有(無)資料周期的平均值表示。推導出五項性能指標中，包含兩項穩
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態的遺失機率及三項暫態的遺失機率，這些參數用以決定蜂巢中該保留多少預

備通道。進而，我們也從暫態的性能推導出穩態性能。從這些結論可以證明本

論文對無線網路在切換時，能提供最佳的調整方針。 

 

關鍵詞：切換、馬可夫到達過程、遺失機率 
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1. Introduction 

Handoff basically involves change of 

radio resources from one cell to an adjacent 

cell. It is well known that if an new call is 

blocked, it is not as disastrous as a handoff 

call being dropped. Therefore, it is important 

to provide a higher priority to handoff calls 

so that  ongoing calls can be maintained [8] 

[22]. One way of assigning priority to 

handoff requests is by assigning guard 

channels to be used exclusively for handoff 

calls from among the available channels in a 

cell. This guard channel reservation handoff 

scheme has a tunable threshold for guard 

channel configuration. With a selected 

threshold, a block period is defined the 

interval of time during which the channel 

occupancy in a cell is at or above the 

threshold value, and a non-block period is 

the complementary interval of time. The 

available channels at or below the threshold 

is shared by new calls and handoff calls. 

Arriving new calls are blocked by the 

control scheme during a block period. 

Handoff calls are dropped only when the 

channel is full.  

Choosing an appropriate threshold for 

the guard channel for handoff calls is the 

most significant design issue for wireless 

mobile networks. If a relatively low 

threshold is chosen, new calls will be 

excessively blocked, causing a low 

utilization of the channel capacity in a cell. 

On the other hand, if a fairly high threshold 

is chosen, handoff calls will be dropped 

more than expected because of the 

occupancy of the channel by new calls. This 

phenomena prevents the system from being 

able to meet the required drop probability 

for handoff for handoff calls. Performance 

analysis of a threshold policy is therefore 

necessary and desirable in order to assist the 

system in choosing a proper threshold.  

The guard channel reservation handoff 

scheme has increasingly been receiving 

attention in cellular network design due to 

its simplicity in the implementation. Several 

performance evaluations have been 

conducted by examining the new call block 

and handoff call drop behavior of a cell with 

a guard channel reservation handoff scheme. 

Performance analysis of wireless cellular 

systems with Poisson handoff arrivals that 

specifically adopt the guard channel scheme 

has been carried out by a number of authors 

[12] [14]. In [26] [29], they made a 

successful drop analysis of a preemptive and 

priority reservation handoff scheme by 

considering both real-time and non-real-time 

service originating calls, and real-time and 

non-real-time handoff service request calls 

as Poisson arrival processes. All of these 

papers considered only the Poisson handoff 

call arrival process case.  

So far, much research has been focused 

on exploring handoff call arrival processes. 

Orlik and Rappaport [18] addressed the 

issue of the handoff arrival process by 

considering a neighborhood of cells where 

all but one, the cell under study, is assumed 

to generate handoff arrivals according to 

either a Poisson or a two-state 

Markov-Modulated Poisson Process. 

Rajaratnam and Takawira [20] empirically 

showed that handoff traffic is a smooth 

process under negative exponential channel 

holding times. They characterize handoff 
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traffic as a general traffic process and 

represent it using the first two moments of 

its offered traffic. Zeng and Chlamtac [28] 

have shown that the cell residence time 

distribution influences the handoff traffic 

statistics. They used a Gamma distribution 

for the cell residence times and showed that, 

for a large cell residence time variance in a 

non-blocking environment, handoff traffic 

cannot be characterized by a Poisson process. 

From the above we can conclude that there 

is significant evidence that the handoff 

traffic cannot always be modeled as a 

Poisson process. The distribution type of the 

handoff interarrivals is still an open issue. 

Consequently, there is a need to develop 

performance  models that allow for general 

distributions in handoff interarrivals. So far, 

several performance models with general 

distributions for handoff interarrivals have 

been conducted. Alfa and Li [1] derived a 

performance analysis method based on the 

Markovian arrival process(MAP) for 

arriving calls, and under the conditions that 

both the cell’s residence time and the 

requested call holding time possess the 

general phase type(PH) distribution. 

Therefore, Li and Alfa [11] proposed the 

queueing model with MAP arrival calls to 

investigate the related performance 

measures of the priority reservation handoff 

scheme. Dharmaraja, Trivedi and Logothetis 

[4] successfully analyzed new call block and 

handoff call drop probabilities of a queue 

with a priority channel allocation scheme by 

considering new calls as Poisson processes 

and handoff call as renewal processes. 

Rajaratnam and Takawira [19] derived a 

performance analysis method based on 

Poisson new call arrivals, generalized 

handoff call arrivals, and using channel 

holding-time distributions that are more 

suitable and flexible than the simple 

negative exponential distribution. Wang et. 

al. [27] derived a matrix-analytical method 

based on PH distribution handoff call and 

new call to analyze the long-term new call 

block and handoff call drop probabilities and 

the short-term handoff call drop probability 

during block period.  

The strategy and mathematical  model 

used here to examine the performance 

measures of a guard channel reservation  

handoff scheme are different from those in 

the literature in one or more respects. In this 

paper, we use a MAP to model handoff call 

arrival processes due to the following 

conditions: 1) it is simple but good enough 

to fit field data, and 2) the resulting queueing 

system model is tractable. A main advantage 

of using Markovian models for traffic 

description of queues is that there are 

efficient numerical analysis methods, 

commonly referred to as matrix analytic 

methods, for the evaluation of a Markovian 

queue. Based on the above investigation, we 

use a MAP instead of general distributions 

to model handoff call and new call arrival 

process so that the the performance 

measures can be solved exactly using 

matrix-analytic techniques.  

In addition to the evaluation of the new 

call block and handoff call drop probabilities, 

we examine the conditional handoff call 

drop during the block period. The threshold 

used to determine the block period splits the 

state space in two, allowing the use of two 

hypothesized Markov chains to describe the 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

黎明學報 23(1)： 

15 

alternating renewal process. The 

distributions of various absorbing times in 

the two hypothesized Markov chains are 

derived to compute the average durations of 

the block period and the conditional handoff 

call drop probability during a block period. 

These performance measures will 

significantly assist the guard channel 

reservation handoff mechanism for 

determining a proper threshold. The overall 

analysis in this paper is based on the 

matrix-analytic approach [15] [16]. It is 

simple and efficient to compute the 

numerical results by any efficient 

mathematical tool.  

This paper is organized as follows. In 

Section 2, the MAP as the new and handoff 

call model is briefly introduced. In Section 3, 

the new call block probability and handoff 

call drop probability are analyzed. 

Numerical results are computed and 

discussed in Section 4 to reveal the 

computational tractability of our analysis 

and to gain insight into the design of a guard 

channel reservation handoff scheme in 

wireless mobile networks. Some concluding 

remarks are given in Section 5.  

 

2. Traffic Model 

Many analytically tractable models 

have been proposed to describe new call and 

handoff call traffic in the literature. However, 

although the Markovian based traffic model 

requires the estimation of a large number of 

parameters to describe the network traffic 

[7], much research has focused on parameter 

estimation and application of MAP to model 

network traffic. Buchholz [3] presented an 

algorithm to fit the parameters of MAP 

according to measured data. In [6], Heyman 

and Lucantoni provided evidence that 

Markov-modulated Poisson process (MMPP) 

which is a special case of MAP is a good 

model for Internet traffic at the packet/byte 

level. In [10], Kang et al. provided evidence 

that MAP yielded very good estimation of 

the cell loss ratio for common superpositions 

of voice and VBR  video sources. In [24], 

Salvador et al. proposed a parameter fitting 

procedure using superposed two-state 

MMPP that leads to accurate estimates of 

queueing behavior for network traffic 

exhibiting long-range dependent behavior. 

Telek [25] derived the minimal presentation 

of MAP and developed effective fitting 

models. Based on those studies, we can state 

that the MAP process is able to model a 

wide variety of new and handoff call traffic 

streams. In this paper, the arrival process of 

new and handoff call traffic is modeled by a 

MAP. A brief exposition of MAP is given in 

the rest of this section.  

The MAP is a generalization of the 

Poisson arrival process by allowing for 

non-exponential inter-arrival times, while 

still preserving an underlying Markovian 

structure [13]. It is a marked point process 

with arrivals generated at the transition 

epochs of a particular type of m-state  

Markov renewal process [17]. A MAP can 

be more easily described by a 

two-dimensional  continuous-time Markov 

chain{(N (t), J (t)), t ≥ 0}, on the state 

space {(n, j)|n ≥ 0, 1≤ j ≤m}, with 

infinitesimalg enerator having the 

structure 
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where N (t) stands for a counting variable, J 

(t) represents an auxiliary phase variable, 

and  ’s are m×m matrices, called 

parameter matrices. The Markov chain then 

defines an arrival process where the transition 

from state (n, i) to state (n + 1, j), n ≥ 0, 

and 1 ≤ i, j ≤ m, corresponds to an arrival 

and a phase change from phase i to phase j. 

The matrix  with elements  , 1 ≤ i, 

j ≤ m, governs state transitions which 

correspond to an arrival, and the matrix    

governs state transitions which correspond to 

no arrivals. The sojourn time in phase i with 

n accumulated packets, i. e. , in the state (n, i), 

is exponentially distributed with parameter 

−  , which is independent of n. At the 

end of that sojourn time, a state transition 

will occur. With probability −  , 

there will be a transition to phase j without 

any new arrival, i. e. , to state (n, j), for 1 ≤ 

j ≤ m and j = i. With probability 

−  , there will be a transition to 

phase j with an arrival, i. e. , to state (n + 1, 

j), for 1 ≤ j ≤ m. Note that in this case, j 

may be equal to i. The sum of both 

parameter matrices 

 =   +       (1) 

is an m×m matrix which is the infinitesimal 

generator of the underlying Markovian 

structure {J (t), t ≥ 0} with respect to 

the MAP. We assume that  the underlying 

Markovian structure is stable and 

irreducible. Thus the Markov chain{J (t), t 

≥ 0}has a unique stationary probability 

vector π,  

πD  = 0, π ≥ 0 and  πe  = 1      (2) 

here e is assumed in this paper to be an all-1 

column vector with compatible dimension. 

We also assume that  is nonsingular such 

that the sojourn time at any state of the state 

space{(n, j)|n ≥ 0, 1 ≤ j ≤ m}is finite with 

probability one for guaranteeing the process 

never terminates. The fundamental arrival 

rate λ of this MAP is defined as 

λ = π  e.  (3) 

where π  and e are in (2).  

Now let us observe J (t) immediately 

after t=  when the nth packet arrival 

occurs. Then the discrete time 

sequence{J(  )}is an embedded Markov 

chain. Consider the interarrival time 

= −  , n ≥1, and define the transition 

probability density function  (x) by 

 (x)dx = P [x <  ≤ x + dx, J (  ) = 

j|J ( ) = i].  

Let F (x) be a m × m matrix with its ij-th 

entry being  (x). Then, we can find 

F (x) =  
 .  

Then the distribution function matrix for the 

interarrival time can be obtained [9] by 

F̃(x) = =(I−  )(  )   

(4) 

where the matrix  is nonnegative 

definite.  

An example of the MAP process is a 

MMPP, in which the Poisson arrival rate is 

governed by the state of an underlying 

continuous-time Markov chain. In an MMPP, 

packets arrive according to a Poisson process 

whose instantaneous rate is a function of the 
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state of a continuous-time finite Markov 

chain. Arrivals of an MMPP occur according 

to a Poisson process of rate 
 

, while the 

system is in phase i. In referring to the MAP 

model, the MMPP model corresponds to the 

special case. Consider a continuous time 

Markov chain J (t) which assumes a finite 

number of phases{1, ···, m}. Its 

infinitesimal generator is D. When J (t) = i, 

packets are generated with Poisson rate . 

Then the infinitesimal generator of this 

MMPP (N (t), J (t)) takes the following 

structure  

 

where 

 

and 

  = D   

In this paper we propose to model both 

new and handoff call traffic by a MAP. We 

assume that new call traffic is characterized 

by a sequence of parameter 

matrices and handoff call traffic by a 

sequence of parameter matrices. 

 and  are  and  

matrices, respectively. The sequence 

 of the defining parameter 

matrices for the superposed new and handoff 

call traffic can be obtained by 

i =0, 1     (5) 

where ⊕  is the Kronecker sum [2] [5]. 

Note that each is of dimension( ) × 

( ) [17].  

 

3. Performance Analysis 

New arrival call will be modeled using 

a MAP with a sequence  of 

parameter matrices and handoff call will be 

modeled using a MAP with a 

sequence of parameter matrices 

as described inSection 2. We assume that 

ongoing call (new or handoff ) connection 

times are exponentially distributed with 

parameter  . The time spent in a given 

cell, before handing off, is called the cell 

dwell time. We assume this time is also 

exponentially distributed with parameter 

 . Note that new calls that find all S−   

channels busy will leave the system and 

handoff calls which find all S  channels 

busy will leave the system.  

 

3.1 Queueing Model 

Consider the embedded continuous- 

time  Markov chain{(L(t), J (t)), t ≥ 

0}of the queuing system on the 

two-dimensional  state space ({0, 1, ..., S} 

× {(1, 1), (1, 2), ..., (  )}), where L(t), 

and J (t) denote the channel occupancy, and 

the phase of the underlying MAP of 

superposition of handoff call and new call, 

at time t respectively. For convenience, the 

queuing system is said to be at a level j if its 

channel occupancy is equal to j. The 

embedded Markov chain now has an 

infinitesimal generator of the following 

block form 
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Q= 

 

(6) 

 

3.2 New Call Block and Handoff Call 

Drop Probabilities 

Let x = (  ,  , . . . ,  ) be the 

stationary probability vector of the Markov 

chain Q, i. e.  

xQ = 0,  x ≥ 0 and  xe = 1,      (7) 

where = ( (1, 1) , . . . , (  , 

 ) ), ∀ 0 ≤ k ≤ S. Since Q is stable, we 

have (  ,  ) = P {L(t) = k, J 

(t) = (  ,  )}, for all k, (  ,  ), and 

the vector corresponds to steady state 

probabilities of states of the Markov chain Q 

at level k.  

Now let be the number of new call 

blocking in the interval [0, t). Then the 

expected value of (t) denoted by E 

[  (t)], is given by 

 

Consequently, the new call blocking 

probability, denoted by , can be 

calculated by 

=  

where  is the fundamental arrival rate of 

the new call and can be calculated by (3) 

with the sequence{  , i = 0, 1}of 

parameter matrices. Consequently, the 

handoff call dropping probability, denoted 

by can be calculated 

=  

where  is the fundamental arrival rate of 

the new call and can be calculated by (3) 

with the sequence{  , i = 0, 1} of 

parameter matrices.  

 

3.3 Distribution of Block and Non-block 

Periods 

The queueing system passes through 

alternating block and non-block periods. 

The patterns of block and non-block period 

are then studied by decomposing the state 

space{0, 1, . . . , S} × {(1, 1), (1, 2), . . . , 

(  ,  )} into two subsets 

   ={0, 1, . . . , S } × {(1, 1), 

(1, 2), . . . , (  ,  )} 

={S , . . . , S} × {(1, 1), (1, 

2), . . . , (  ,  )} 

according to the block threshold S − . With 

this partition of the state space, the 

infinitesimal generator Q of the embedded 

Markov chain of the queuing system can be 
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partitioned as 

Q= (8) 

where 

 

=  

 

=  

 

Matrices  ,  , and  are 

transition rate submatrices governing 

transitions from  into itself, from  

into , from   into itself and from  

into  , respectively. The sojourn time in 

each non-block period and block period is 

characterized by a transient Markov chain, 

with respect to  and for transitions on 

 and  . Non-block and block periods 

are characterized by deriving the steady state 

probabilities for the initial state of each 

transient Markov chain, as denoted by vector 

for non-block and vector 
 

block 

periods. By definition 

 

 (9) 

 
(10) 

Let 
 

and  be the lengths of 

non-block and block periods, respectively. 

Obviously, 
 

and  are the life times of 

the two transient Markov chains, with respect 

to and for transitions on  and  . 

Thus, (t)and  (t) represents the 

distributions of all absorbing times of the 

transient Markov chains, with respect to 

and for transitions on  and  . 

According to the transient Markov chain 

theory, the Laplace transforms of the 

respective probability density functions of 

 and are 

 

 

The average lengths of non-block and 

block periods are 

(  

 

(  

 

by , , we 

have 

 

 

 

3.4 Handoff Call Drop Probability 

During a Block Period 
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b 

b

To investigate the drop behavior during a 

block period, submatrix 
 

is written as 

(0)+  

The matrix (0) comprises the 

probabilities that make state transitions 

within without any handoff call drops. 

However, the matrix (1), comprises the 

probabilities that make state transitions 

within with a handoff call drop. and 

(0)= 

 

(1) =  

Notably, the behavior of the queuing system 

during a block period can be described by 

the transient Markov chain,  for 

transitions on . For a state (i, (j1 , j2 )) 

in , let be the probability hat 

the state of transient Markov process enters 

(i, (j1 , j2 )) with a total of ℓ handoff call 

dropped during [0, t). Let  be an 

-vector whose (i, (j1 , j2 ))-th element 

dropped probability is 

Furthermore, the initial vector 

 can be determined based on the 

behavior of the queuing system during a 

previous non-block period as 

 dt 

=  

Additionally, the vecto r , t > 0, ℓ 

≥0, can be obtained by the differential 

equation 

(0)+

(1) 

                (13) 

Let  be the generating function of 

, then by (13) 

(z) 

 

Where (z)= (0)+z (1) is the 

generating function of the sequences{ ( ), 

}. Sloving the above differential 

equation gives 

 

 

Next, let  be the number of handoff 

call drops during a block period and 

Pr{ }be the 

probability that there are handoff call 

drops during a block period of length no 

greater than t. Then 

 

Which means that the probability density 

function of with is . 

Let be the generating function of 
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. Then 

 

Let  be the Laplace-Stieltjes 

transform of , Then 

=

 

By(14). Now the average total number of 

call drop during a back period, denoted, can 

be calculated as 

 

 

 

By = and . 

Drop probability during a block period can 

be obtained by 

 

By the renewal reward theorem [21], the 

long-term handoff call drop probability of a 

cycle(a non-block period and a block 

period)is 

 

where is the average length of 

a cycle, from (17) we have 

 

Thus the handoff call drop probability is 

obtained from short-turm performance 

measures .  

 

4. Numerical Results and 

Discussion 

In this section, we will investigate the 

numerical results under MAP new call and 

handoff call. In experiments, the numerical 

values of the MAP parameters of handoff 

call used: 

 

 

 

and the numerical values of the MAP 

parameters of new call used: 

 

 

 

We set =200 sec. We consider the 

case corresponding to a macrocell of radius 

10 km and we assume vehicles travel at the 

average speed 60km/hr. Average dwell 

time =940sec. Probability of a handoff 
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is = = 0.17. Then the relation 

between the two traffic intensities is obtained 

[23] 

 
Here we used the parameter = 

The new call arrival rate is 

adjusted so that the queue will have a 

different traffic condition. The channel 

capacity S is taken to be 50.Consider the 

guard channel handoff reservation scheme to 

the macrocell examples. Recall that  the 

intensity  of handoff call in terms of the 

new call arrival intensity was 0.2048 . 

The performance measures are shown in 

Figures 1–4 for a number of values of the 

newcall arrival intensity and for various 

values of . As shown in Figure 1, results 

are as expected:for a given new call intensity 

, the handoff call drop probability does 

decrease as  increase, with the new call 

block probability increasing at the same time. 

Figure 1 also show the expected increase of 

both the new call block probability and the 

handoff call drop probability with increasing 

traffic intensity . They also show that 

there is a trade-off between the new call 

block and the handoff call drop probabilities. 

As the number of guard channel reserved 

for handoff calls increases, the new call 

block probability increases while its 

handoff call counterpart decreases, as 

expected. But the increase rate of is not 

as high as the the decay rate of .  

It is apparent that the relative 

improvement in handoff call drop 

probability in this case is substantially 

greater than the relative increase in new call 

block probability. Note that with  =0.6, 

the two probabilities at the values of 

1.66× and 0.2, respectively, with one of 

the fifty channels as a guard channel. With 

ten guard channels assigned, the handoff call 

drop probability decreases further to 

7.12× , a factor of about decrease, 

while the new call block probability increase 

to0.4, a much smaller increase. Further 

increases in the number of guard channels 

are possible, but the resultant new call block 

probability becomes quit high. Note that 

with guard channels  from 1 to 10, the 

handoff call drop probability drops to 

extremely small values, ranging 

from1.66× to7.72× over the range of 

traffic intensity = 0.6. The 

corresponding new call block probability 

ranges from 0.2 to 0.4. The resultant new 

call block probability becomes quit high in 

these cases. Increasing the number of 

channels would reduceboth probabilities. 

The introduction of guard channels therefore 

have the desired effect: on-going calls are 

much less likely to be dropped during 

handoff. What would a good design choice 

be for this macrocell example with S=50 

channels assigned per cell?It would appear 

that operating at a new call traffic intensity 

of = 0.6 would provide tolerable 

performance. A five channels allocated to 

handoff calls would provide a handoff call 
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drop probability of about 5.89× , while 

the corresponding new call block probability 

would be about 0.3.  

 

 

 
Figure 1: Handoff call drop probability and new call 

block probability with cell capacity S=50, 

and guard channel Sg =1,5,10. 

 

 

 
Figure 2: Comparison of handoff call drop 

probability and conditional handoff call 

drop probability with cell capacity S=50, 

and guard channel Sg =1,5,10. 

 

 

 
Figure 3: Average length of block and non-block 

periods with cell capacity S =50, and 

guard channel Sg =1,5,10. 

 

 

 
Figure 4: Probability that  cell remains in 

block period with cell capacity S =50,  

and guard channel Sg =1,5,10. 

 

 

The discussion above confirms that the 

guard channel reservation handoff scheme is 

an effective mechanism to guarantee the 

drop probability for handoff calls by 

adjusting the guard channel value as 

follows. When the value of is too high 

to satisfy the drop probability of the handoff 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

黎明學報 23(1)： 

24 

drop 

call, the threshold value S  is decreased 

to reserve more guard channel for the 

handoff calls. And when the value of  

is lower than the drop probability guaranteed 

value, the threshold value S  is increased 

to increase channel sharing among all 

arriving calls, both handoff and new. As a 

result, not only is the drop probability for 

handoff calls maintained but also 

near-optimum utilization of the capacity for 

new calls is provided.  

The conditional handoff call drop 

probability  is shown in Figure 2 for 

a number of values of the new call arrival 

intensity and for various values of . As 

shown in Figure 2, results are as expected: 

for a given new call intensity  , the 

conditional handoff call drop probability 

does decrease as  increase. Figure 2 also 

show the expected increase of the 

conditional handoff call drop probability 

with increasing traffic intensity  . In 

Figure 2, it can be seen that  conditional 

handoff call drop probability is higher 

than handoff call drop probability . The 

difference is more import in 

light-to-moderate load conditions than in 

heavy load condition. This confirms to our 

general expectation.  

It is apparent that the conditional handoff 

call drop probability in this case is 

substantially greater than the handoff call 

drop probability. Note that with = 0.6, 

the two probabilities start off at the values of 

0.23 and 0.17, respectively, with one of the 

fifty channels as a guard channel. With five 

guard channels assigned, the conditional 

handoff drop probability decreases further to 

5.65× , while the handoff call drop 

probability decrease to 5.89× , a much 

larger decrease. Further increases in the 

number of guard channels are possible, but 

the resultant drop probability becomes quit 

low. Figure 2 shows that with =1, 5, 10, 

the difference between the conditional 

handoff drop probability and handoff call 

drop probability is extremely large values, 

over the range of traffic intensity from 

0.2 to 0.6. The difference between the 

conditional handoff drop probability and 

handoff call drop probability is extremely 

small values, over the range of traffic 

intensity  from 0.7 to 1.Increasing the 

number of channels would increase the 

distance between both probabilities.  

Figure 3 summarizes the numerical 

results of the average lengths of a block 

period  and non-block period 

with respect to a number of values of 

the new call arrival intensity and for 

various values of . As expected, the 

average length of a non-block period 

is much longer than that of a block period 

under a light-to-moderate load condition, 

and  decreases as  increases. The 

decay is more import in a light-to-moderate 

load condition than in a heavy load 

condition. As expected, increases as 
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 increases. The increase is more import in 

a moderate-to-heavy load condition than in a 

light load condition. Because a block period 

and a non-block period consist of a cycle, 

decreases the average length of the 

non-block period by a larger factor would 

reduce the length of the cycle. This effect 

causes the system to frequently alternate 

block periods and non-block periods. 

Because the system alternates between 

non-block periods and block periods, 

increasing the new call arrival intensity  

increases the probability that the system 

remains in the block period.  

As shown in Figure 3, note that with the 

range of guard channels  from 1 to 10, 

the average length of block period increases 

to extremely small values, ranging from 3.6 

to 5.8 over the range of traffic intensity 

from 0.2 to 1.As shown in Figure 3, note 

that with ρ(n) = 0.4, the average length of 

non-block period at the value of 1.0× , 

with one of the fifty channels as a guard 

channel. With ten guard channels assigned, 

the average length of non-block period 

reduce further to 1.6× , a factor of about 

10 decrease. Because the block period and 

the non-block period consist of a cycle, it 

increases the probability of staying in the 

block period in this case. Increasing the 

number of channels would reduce the 

average length of block period and increase 

the average length of non-block period.  

 

5. Conclusion 

In this paper, we have presented an 

matrix-analytical performance model to 

study new call block and handoff call drop 

for MAP. The proposed model may be of 

great interest in the design of 3G cellular 

mobile networks. We have investigated the 

handoff call drop probability during block 

period by means of conditional statistics 

with respect to block and non-block periods 

that occur in an alternating manner, in 

addition to the evaluation of the handoff call 

and new call probabilities. This shows that 

the application of the matrix-analytical 

approach to the performance measures of 

guard channel reservation handoff scheme is 

computationally tractable. We also compute 

and discuss numerical results to confirm our 

expectation of the guard channel reservation 

handoff scheme as an effective mechanism 

not only to provide the drop probability 

guarantee for the handoff call, by adjusting 

the threshold value of the guard channel, but 

also to provide the near-optimum utilization 

of the channel capacity for the new call.  
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