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Order Statistics and Data Augmentation
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Abstract

In this study, we use the method of order statistic technique. In traditional statistical
method one may assume a conjugate prior distribution. Our approach of data augmentation
is supposed to help for small samples or cases where a very few observations are available.
We use prior distributions, centered at the given observations (including order statistics), to
generate a larger artificial dataset which may be termed as second generation dataset. This
larger second generation dataset is then used to draw inferences. The method is dependent on

computational resources, and may be useful in applied problems.
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I ~ Introduction

The increasing availability of computers and statistical software packages has enlarged
the role of statistics as a tool for empirical research. Computational resources and availability
of affordable computational facilities have changed the face of research in mathematical and
statistical sciences. The techniques of Gibbs sampling ( see Casella and George ( 1992 ) ) the
EM algorithm ( see Dempster, Laird and Rubin ( 1997 ) ), bootstrap ( see Efron ( 1982 ) ), etc.
are very useful, but can not be implemented without the computational resources. The purpose
of this note is also to propose a simple technique with the help of computational resources (see

SAS) which can enable to understand a small dataset.

The idea of our proposed technique is very simple, and borrows the idea of standard
Bayesian method. It has a flavor of parametric bootstrap since the technique is built up on a
parametric model for the idea, and the dataset has been used twice. The proposed technique
is described as follows. Assume we have iid observations X ,X,,...,X, from a
distribution f(x|#). When n is large, efficient inferences on & is possible with the help
of classical methods. But when n is small ( very small ) then one may seek the help of other
methods notably the Bayesian one. In such a case one assumes a suitable prior distribution
0 ~ (), often a conjugate one, to draw inferences on €. What we are proposing here is

that given the original dataset (X,,X,,...,X,), call it first stage observations, generate the
augmented dataset or the second stage dataset X, (j=1,2,..., m;;i=1,2,...,n)as X,
iud f(|x;),j=1,2,..., m,. Once this is done, then draw the inferences on 6 based on
X,;(I<j<ml<i<n) with a new sample size m =m, +m, +...+m, which can be made
much larger than the original sample size n.

In the following two sections we describe the above mentioned method for the Gamma as
well as the exponential distributions. This is still an ongoing work and we hope to expand it

for other distributions as well.
II ~ Gamma Distribution

Now let us consider the gamma model where X, X,,..., X, are iid Gamma(a) with pdf

f(x|o) = ;xa’le’x, x > 0,0>0.

['(a)
After observing x,’s, the second stage observations are generated as
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XX Xy, iid Gamma(X ),

X, X, X, iid Gamma(X ).

nl> nm,

As a demonstration ( see Faraway (1992)) ( Andrews and Pregibon (1978)), we generate
n = 15 iid observations from Gamma( 1 ) distribution (taking o= 1 ). The following figure

gives the pdf curve superimposed on the relative frequency histogram of the original sample.
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Figure 2. 1. Histogram of the gamma data with n = 15
Using m, =m, =...=m;; =10 =m,(say as a demonstration) = 10, we now generate

m =nm, =150 second stage observations from the above first stage observations. The

following diagram shows the relative histogram
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Figure 2. 2. Histograms of the gamma data with m=150.
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A modified sampling scheme can be used where m. s can be chosen suitably. Since

the model is positively skewed, we’ll give more emphasis on the smaller observations which

have higher probabilities to appear.
III ~ Exponential Distribution

Let us consider the exponential model where X, X,,..., X, are iidd Exp(&) with pdf

1 X
f(x|8)= —exp(——),x>0, 6 >0.
(x/0) 7 p( 0)
After observing x,’s, the second stage observations are generated as

X, Xy X, did Exp(X);

iid Exp(X ).

nm

X X X

nl»

As a demonstration, we take and generate n = 15 iid observations and draw a random
sample of size 15 from Exp( 1) distribution (taking 6 =1). The following figure gives the

pdf curve superimposed on the relative frequency histogram of the original sample.
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Figure 3. 1. Histogram of the exponential data with n =15
Using m, =m, =...=m;; =10=m,(say as a demonstration) = 10, we now generate

m=nm, =150 second stage observations from the above first stage observations. The

following diagram shows the relative histogram
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gure 3. 2. Histograms of the exponential data with m=150.

So, first we use order statistics ( see David and Nagaraja ( 2003 ) ) to order the

observations X, < X, <---< X . Then take m, proportional to (n + 1 -1). For

instance, take (n+1-1);1e., m=15 m,=14, ..., m,;=1,and m = 120. So, generate

X, X, X,

im;

iid Exp(X ). Thus the second stage sample size is m = 120 and the

il»

following figure shows the relative histograms.
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gure 3. 3. Histograms of the exponential data with m=120.
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Note that with the above modified sampling scheme. X, ,---, X,

m are iid Exp(X ;).
Therefore, given x, , X, :Zx.j follows ~ Gamma  (x,,m;) with  pdf

(x(i)m" / F(mi))exp(—x(i)xi.)xi.m"_l. So, from the first stage data, we have the second stage
sufficient statistic (X, ,X,,---,X,). X, ~ Exp(0), x,|x, ~ Gamma (x,,m;). So, the

joint density of (x,,x,) is given by (&," /T'(m,))exp{—x,(@+x,)}x," . Therefore, the
marginal density of x, is given by g,(x,)=mx,""0(@+x,)"". Using g(x,) as

likelthood for each x,, one can get the joint likelihood as L, =f[1 g,(x,), called the

likelihood of the augmented data. The value of & which maximizes L, ( or InL,) is

denoted by 6,,, which satisfies the equation
n= 0> (m, +D)I0 +x,). . (3.1)
i=1
In the following we observe the bias and SE of the above 9(2) along with those of 9(1)

here 9(1) = (1/x)= the maximum likelihood estimator ( MLE ) of & based on the original

sample. Using n = 10", we compute the bias and standard error (SE)

M=

é(é)/n—l;

M=

Bias( 9(1)) ~ é({) /n—=1; Bias( é(z)) ~

J J

Il
—_
Il
—_

—_ N -, _ ~ ~, . ~
SE(6)) = \/Z(%) =05))" /n 3 SE(fy) ~ \/2(9(%) =05 In
=1

J=1

The computed values are

Bias(4,,,) = 0.001005436 ; Bias(8,,) = -0.72291 ;
SE(d,,,)=0.25738 ; SE(0,,,) = 0.180156 .
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IV ~ Conclusion and Further Applications

In this study we follow the method of Bayesian technique with a difference. It has a
flavor of parametric bootstrap since the technique is built up on a parametric model for the
idea, and the dataset has been used twice. Our approach of data augmentation is supposed to
help for small samples or cases where a very few observations are available. We use some
computational resources, and may be useful in applied problems. In the future, we can use the

proposed method for chi-squared and logistic distributions.
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