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Abstract 

In this study, we use the method of order statistic technique. In traditional statistical 
method one may assume a conjugate prior distribution.  Our approach of data augmentation 
is supposed to help for small samples or cases where a very few observations are available. 
We use prior distributions, centered at the given observations (including order statistics), to 
generate a larger artificial dataset which may be termed as second generation dataset.  This 
larger second generation dataset is then used to draw inferences. The method is dependent on 
computational resources, and may be useful in applied problems. 

 
Keywords：Order statistics、prior distribution、conjugate distribution 

摘 要 

本研究我們使用次序統計量技術的方法，傳統的統計方法是假設有先驗分配(可能是

共軛分配)。我們用小樣本中非常少的觀察值作資料增加擴大，用以觀察值(包含次序統

計量)為中心的先驗分配來產生一個較大的資料集(稱作第二產生資料集)，這個第二產生

資料集可以用來做統計推論，這方法需要用到電腦資源而且是對應用問題有幫助的。 
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I、Introduction 

The increasing availability of computers and statistical software packages has enlarged 
the role of statistics as a tool for empirical research. Computational resources and availability 
of affordable computational facilities have changed the face of research in mathematical and 
statistical sciences. The techniques of Gibbs sampling ( see Casella and George ( 1992 ) ) the 
EM algorithm ( see Dempster, Laird and Rubin ( 1997 ) ), bootstrap ( see Efron ( 1982 ) ), etc.  
are very useful, but can not be implemented without the computational resources. The purpose 
of this note is also to propose a simple technique with the help of computational resources (see 
SAS) which can enable to understand a small dataset. 

The idea of our proposed technique is very simple, and borrows the idea of standard 
Bayesian method.  It has a flavor of parametric bootstrap since the technique is built up on a 
parametric model for the idea, and the dataset has been used twice.  The proposed technique 
is described as follows.  Assume we have iid observations nXXX ,,, 21   from a 
distribution )|( xf .  When n is large, efficient inferences on   is possible with the help 
of classical methods.  But when n is small ( very small ) then one may seek the help of other 
methods notably the Bayesian one.  In such a case one assumes a suitable prior distribution 

)(~  , often a conjugate one, to draw inferences on  .  What we are proposing here is 
that given the original dataset ),,,( 21 nXXX  , call it first stage observations, generate the 

augmented dataset or the second stage dataset ijX  ( j = 1, 2, …, im ; i = 1, 2, … , n ) as ijX  

iid )|( ixf  , j = 1, 2, …, im .  Once this is done, then draw the inferences on   based on 

)1;mj(1 i niX ij   with a new sample size nmmmm  ...21  which can be made 

much larger than the original sample size n. 

In the following two sections we describe the above mentioned method for the Gamma as 
well as the exponential distributions.  This is still an ongoing work and we hope to expand it 
for other distributions as well. 

II、Gamma Distribution 

Now let us consider the gamma model where nXXX ,,, 21   are iid Gamma(α) with pdf 

f(x|α) = xex 


1

)(
1 


,  x   0, α> 0. 

After observing sxi
, , the second stage observations are generated as 
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As a demonstration ( see Faraway (1992)) ( Andrews and Pregibon (1978)), we generate 
n = 15 iid observations from Gamma( 1 ) distribution (taking α= 1 ).  The following figure 
gives the pdf curve superimposed on the relative frequency histogram of the original sample. 

 

 
Figure 2. 1.  Histogram of the gamma data with n = 15 

 

Using 01521 10 mmmm   (say as a demonstration) = 10, we now generate 
1500  nmm  second stage observations from the above first stage observations.  The 

following diagram shows the relative histogram 

 

 
Figure 2. 2.  Histograms of the gamma data with m=150. 
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A modified sampling scheme can be used where smi
,  can be chosen suitably.  Since 

the model is positively skewed, we’ll give more emphasis on the smaller observations which 
have higher probabilities to appear. 

III、Exponential Distribution 

Let us consider the exponential model where nXXX ,,, 21   are iid Exp( ) with pdf 

f(x| ) = 

1 exp(


x

 ), x > 0,   > 0. 

After observing sxi
, , the second stage observations are generated as 

).(,,,

);(,,,

21

111211 1

nnmnn

m

XExpiidXXX

XExpiidXXX

n






 

As a demonstration, we take and generate n = 15 iid observations and draw a random 
sample of size 15 from Exp( 1 ) distribution (taking   = 1 ).  The following figure gives the 
pdf curve superimposed on the relative frequency histogram of the original sample. 
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Figure 3. 1.  Histogram of the exponential data with n = 15 

 

Using 01521 10 mmmm   (say as a demonstration) = 10, we now generate 
1500  nmm  second stage observations from the above first stage observations.  The 

following diagram shows the relative histogram 
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gure 3. 2.  Histograms of the exponential data with m=150. 
 

So, first we use order statistics ( see David and Nagaraja ( 2003 ) ) to order the 

observations )()2()1( nXXX   .  Then take im  proportional to ( n + 1 - i ).  For 

instance, take ( n + 1 - i ) ; i.e. , 1m = 15, 2m = 14, … , 15m = 1, and m = 120.  So, generate 

iimii XXX ,,, 21   iid Exp )( )(iX .  Thus the second stage sample size is m = 120 and the 

following figure shows the relative histograms. 
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gure 3. 3.  Histograms of the exponential data with m=120. 
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Note that with the above modified sampling scheme.  
iimi XX ,,1   are iid Exp )( )(iX .  

Therefore, given )(ix , 


 
im

j
iji xX

1
 follows Gamma ),( )( ii mx  with pdf 

1
)()( )exp())(/( 

 ii m
iiii

m
i xxxmx .  So, from the first stage data, we have the second stage 

sufficient statistic (  nXXX ,,, 21  ).  ~iX  Exp )( , ~| ii xx   Gamma ),( ii mx .  So, the 

joint density of ),( ii xx  is given by   1)(exp))(/( 
 ii m

iiii
m

i xxxmx  .  Therefore, the 

marginal density of ix  is given by 
   ii m

i
m

iii xxmxg ()()( 1  .  Using )( ixg  as 

likelihood for each ix , one can get the joint likelihood as )(
1 
 i

n

i
A xgL  , called the 

likelihood of the augmented data.  The value of   which maximizes AL  ( or ln AL ) is 

denoted by (2)


 which satisfies the equation 

                n = 



n

i
ii xm

1
)2()2( )/()1( 


.                    … ( 3. 1 ) 

In the following we observe the bias and SE of the above (2)


 along with those of (1)


  

here )/1((1) x


= the maximum likelihood estimator ( MLE ) of   based on the original 

sample.  Using n = 104, we compute the bias and standard error (SE) 
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The computed values are 
 

Bias( (1)


) = 0.001005436 ;      Bias( (2)


) = -0.72291 ; 

SE( (1)


) = 0.25738 ;           SE( (2)


) = 0.180156 . 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

中州管理與人文科學叢刊第一卷第二期 

 43

IV、Conclusion and Further Applications 

In this study we follow the method of Bayesian technique with a difference. It has a 
flavor of parametric bootstrap since the technique is built up on a parametric model for the 
idea, and the dataset has been used twice. Our approach of data augmentation is supposed to 
help for small samples or cases where a very few observations are available. We use some 
computational resources, and may be useful in applied problems. In the future, we can use the 
proposed method for chi-squared and logistic distributions. 
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