

王瑶池1 廖士興2 李榮哲3

南榮科技大學資訊管理系¹ 南榮科技大學室內設計系² 南榮科技大學創意產品設計系³

摘要

本文主要探討在砷化鎵(GaAs)表面成長不同的氧化物時其介面的光電特性。吾人以分子束磊晶成長法(MBE),分別在砷化鎵的表面成長以下的氧化物:air-(赤裸的表面)、 Al_2O_3 -、 Ga_2O_x -和 $Ga_2O_3(Gd_2O_3)$ -GaAs。從光反射調制光譜(Photoreflectance, PR)的Franz-Keldysh Oscillations (FKO振盪),我們得到air-、 Al_2O_3 -和 Ga_2O_x -GaAs等樣品的介面內建電場分別等於48、44和38 kV/cm,而 $Ga_2O_3(Gd_2O_3)$ -GaAs的介面內建電場則小於21 kV/cm。利用簡單平行板電容模型,求得air-、 Al_2O_3 -、和 Ga_2O_x -GaAs樣品的介面態密度分為2.4、2.2、和 1.9×10^{11} cm⁻² eV⁻¹,而 $Ga_2O_3(Gd_2O_3)$ -GaAs的介面態密度則小於 10^{11} cm⁻² eV⁻¹。其量測結果與在準靜/高頻模式下,以C-V方法所測得之介面態密度產為 度極為吻合。

關鍵字:砷化鎵、光反射調制光譜、Franz-Keldysh Oscillations、內建電場、介面態密度

縱觀今日電子科技, 矽在半導體元件中具有舉足輕重的地位, 除了矽基板的成本較低外, 其主要理由是工業界有能力製造低介面 態密度(interfacial state density, D_{it})和高熱穩定性的SiO₂-Si界面。然 而, 眾所皆知, 以半絕緣砷化鎵(SI-GaAs)為基板成長的金屬-氧化物 - 半導體場效電晶體(MOSFETs), 比起以矽為基板所成長的元件, 具

有更快的傳導特性,且今日工業界對光電元件發展之需求,朝向高速傳導、低功率消耗和電路設計的簡單性等等特性發展,使得oxide-GaAs較oxide-Si更具有發展潛力。唯GaAs的熱氧化作用不像SiO₂-Si 系統穩定,以致於無法在GaAs的表面製造出一個可提供低介面態 密度D_{i1}的介電薄膜(dielectric film)[1]。雖然經由學界與業界二十年 來不斷的努力,依然無法改善。像常用的陽極氧化法和離子(plasma) 氧化法皆無法達成低介面態密度D_{i1}的要求。或者在GaAs表面沉積 不同介電材料(包括SiN₄、SiO_x、Al₂O₃和Ga₂O_x)之前,為了不使GaAs 產生化學變化,必須先在表面作乾性和濕性的表面清潔工作[2],然 而仍無法證實加強模式(enhancement-mode)的GaAs MOSFETs具有反轉 層(inversion)存在。

貝爾研究群利用現場 (in-situ)MBE技術成長了Ga₂O₃(Gd₂O₃)-GaAs 結構,並利用電容-電壓(C-V)、電導-電壓(G-V)和穩態 (steady state)螢光光譜 (PL)來研究其界面的電性,以半能隙的能量平均 時,發現D_{it}的大小在10¹⁰ cm⁻²eV⁻¹的數量級,而且其介面複合速率 在4000-5000cm/s [3]。最近,貝爾實驗室亦利用一般的離子佈植方 法,以Ga₂O₃(Gd₂O₃)當作閘極的介電材料,證實加強模式的GaAs MOSFETs具有反轉層。本文中我們將利用光調制光譜 (PR)研究將幾 種不同的氧化物長在GaAs表面,探討其介面上的內建電場,並討 論其介面態密度D_{it}[4],最後再與貝爾研究群之結果作一比較。

二、 理論

當樣品存有較大的內建電場時,其PR光譜會出現Franz-Keldysh Oscillations(FKO)振盪,再經由下式[5,6]

$$n\pi = \phi + \frac{2}{3} [(E_n - E_g)/\hbar\Omega]^{3/2}$$
(1)

可求得內建電場。其中n是代表 FKO極值的註標, ϕ 是相角, E_n 是 第n個極值的能量, E_g 是半導體的能隙,而 $(\hbar\Omega)^3 = (\hbar F e)^2/2\mu$,其 中是 $\hbar\Omega$ 光電特徵能量,F是內建電場,µ是在電場方向的有效質 量。又低電場極限的條件是

$$\left[\left(\hbar\Omega\right)/\Gamma\right]^{3} < 1/3 \tag{2}$$

其中Γ是增寬參數(broadening parameter)。當樣品的電場落在低電場 極限之下,則無FKO的振盪特徵。此時譜線可用下式來擬合[7,8]

$$\frac{\Delta R}{R} = \operatorname{Re}\left[\operatorname{Ae}^{i\theta}(E - E_g + i\Gamma)^{-l}\right]$$
(3)

其中A是譜線的振幅, θ 是相角,E是入射光子能量, E_g 是能隙躍遷能量,l是與臨界點(critical point)的型式有關的參數(對於三維臨界點l=5/2)。由(3)式擬合後,可以得到增寬參數 Γ ,再經由(2)式,可以大約估計電場大小。

當樣品存在ħΩ電場時導致能帶彎曲,而PR訊號是由於內電場 受到調制產生的。我們可以用一個簡單模型-平行板電容器,來解釋 內建電場的機制;負極板由負電荷所在的介面態(對於air-GaAs 結構則為表面態)貢獻,而位於n型GaAs一側很薄的正電荷空乏層 (depletion layer)則為正極板。又平行板電容器的電場可表為

$$F = \frac{\sigma_i}{\varepsilon \varepsilon_o} = \frac{eD_{it}}{\varepsilon \varepsilon_o} \tag{4}$$

其中 σ_i 、 ε 、 ε_o 、e和 D_{it} 分別為表面電荷密度、相對介電常數 (ε =12.96)[9]、自由空間的電容率(permittivity)、自由電子電荷和 被電子所填充的介面態密度(density of occupied states)。從(4) 式知道,一旦從FKO振盪求得電場F,即可求得界介面態密度 (D_{it})。

三、樣品的製作與實驗裝置

本研究中包括了四個樣品(貝爾實驗室提供),其表面成長的氧化物分別為:air-(赤裸的表面)、Al₂O₃-、Ga₂O_x-和Ga₂O₃(Gd₂O₃)-GaAs。 從PR譜線中的FKO振盪,我們能正確地決定介面內建電場遂推得 樣品的介面態密度。

樣品是在一個多腔的MBE中成長,這個系統包括固態源的 GaAs III-V族半導體混合腔、氧化物沉積腔和一個連接這兩個成長腔 的超高真空(UHV)傳輸艙(transfer module), 俩個成長腔的背景壓力 分別為10⁻⁹和10⁻¹⁰ torr。其成長程序是在III-V族MBE腔中,以 高掺雜(2-3×10¹⁸ cm⁻³) n-型(100)GaAs為基板,隨後在基板上成長一層 厚1.5µm的n型的GaAs(Si掺雜1.6×10¹⁶ cm⁻³), 然後在UHV條 件下,將這些樣品現場傳輸到沉積腔作氧化物的成長,在現場傳輸 的過程中並沒有任何污染發生。Al₂O₃、Ga₂O₃和Ga₂O₃(Gd₂O₃)氧化物 薄膜則分別使用鋁氧化物、鎵氧化物和釓氧化物的分子束來沉積。 蒸發這些氧化物的方法是利用電子束來分別蒸發Al₂O₃單晶、 Ga₅Gd₃O₁₂單晶和粉末塊壓(powder-packed)的Ga₂O₃。茲將各個具有不 同氧化物薄膜和厚度的樣品列於表一。本實驗所用的光調制光譜實 驗裝置,如圖一所示。探測光和激發光同時散焦(de-focused)在待測 樣品的同一位置,光強度小於20µW/cm²,其目的在減低光壓效應

(photovoltaic effect), 實驗在室溫下操作,所用的調制頻率為 200Hz。

圖一 光調制光譜的實驗裝置圖。

四、結果與討論

圖二是室溫下所有樣品的PR譜圖,Air-、Al₂O₃、Ga₂O_x-Ga₂As樣品的譜線在高於GaAs的能隙位置(1.42eV)均出現不同週期的FKO特徵(如圖中A-D的標示)。這個結果顯示有不同強度的電場F存在於樣品的介面或表面上,且內建電場F大於低電場極限。圖三中的點線是以($2/3\pi$)(E_n - E_g)^{3/2}對振盪譜線的極值位置的註標n作圖之結果,其中直線為對(3)式作最小平方擬合的結果,從直線的斜率可以獲得光電特徵能量 $\hbar\Omega$,因而求出內建電場F。以上計算所用到的GaAs的電子和重電洞的等效質量分別為0.065 m_o和0.34 m_o, m_o是自由電子的質量,電場的計算結果列於表一。

圖二 常溫下Air、Al₂O₃、Ga₂O_x和Ga₂O₃(Gd₂O₃)-GaAs 樣品的 PR光譜。

圖三 於圖二中具有FKO特徵的三樣品,其 $(2/3\pi)(E_n-E_g)^{3/2}$ 對FKO極值的註標n作圖。

引人注意的是Ga₂O₃(Gd₂O₃)-GaAs的譜線沒有出現FKO特徵,這 表示這個樣品的內建電場在低電場的極限內,以致無法呈現FKO特 徵,在譜線中只有能隙躍遷的特徵。利用(3)式來擬合此譜線可得 譜線的增寬參數Γ,其值約為13 meV,再由低電場極限的條件(2) 式,估計Ga₂O₃(Gd₂O₃)-Ga₂As樣品的內建電場應小於2.1×10⁴ V/cm,此 結果亦列於表一。

將上述計算所得到的內建電場代入(4)式,所得介面態密度分別如下:對於air-、Al₂O₃-、和Ga₂O_x-GaAs樣品介面態密度分為2.4、 2.2、和 1.9×10^{11} cm⁻² eV⁻¹,而Ga₂O₃(Gd₂O₃)-GaAs的介面態密度則小於 10^{11} cm⁻² eV⁻¹,以上計算所用到的GaAs的介電常數為12.96。此外,貝爾實驗室利用C-V準靜/高頻(C-V quasi-static/high frequency)方法,量測Ga₂O₃(Gd₂O₃)-GaAs在各不同能隙能量下的介面態密度,其量測值在 2×10^{10} 到 5×10^{12} cm⁻² eV⁻¹的範圍內,這個結果與PR測量結果是相當吻合的。對於用PR測量air-、Al₂O₃-、和Ga₂O_x-GaAs三種樣品之結果也與用電容一電壓方法和螢光光譜(PL)方法所得的結果一致約為 10^{12} cm⁻² eV⁻¹。

Dielectric film	Thickness(Å)	F(kV/cm)	$D_{it}(10^{11} \text{ cm}^{-2} \text{ eV}^{-1})$
Air	×	48	2.4
Al_2O_3	700	44	2.2
Ga_2O_x	600	38	1.9
$*Ga_2O_3(Gd_2O_3)$	400	<21	<1.0

表一、 樣品的結構、氧化層膜厚、介面電場F及介面態密度Dit

*Estimated from the field limit criterion , $|\hbar\Omega|^3/\Gamma^3 < 1/3$

五、結論

我們成功地利用光調制光譜(PR)量測以MBE現場製造的一系 列氧化物-GaAs結構之介面內建電場,並利用簡單平行板電容模型,求得介面態密度。我們發現Ga2O3(Gd2O3)-GaAs異質結構的內建 電場小於2.1×10⁴ V/cm且介面態密度小於10¹¹cm⁻²eV⁻¹,這與air(表面)-、 Al2O3-和Ga2Ox-GaAs等樣品的結果大不相同。其量測結果與C-V和準 靜/高頻模式所得之結果完全吻合。但是值得強調的是PR技術在量 測過程,對樣品完全沒有破壞性,這是電測量技術所沒有的。而在 GaAs上成長Ga2O3(Gd2O3)確實提供低介面態、高熱穩定性且具 有反轉特性的氧化層,對半導體元件的開發及應用有極高的價值。

参考文獻

- 1. W. F. Croydon and E. H. Parker.(1981). Dielectric Films on Gallium Arsenide (Gordon and Breach, New York)
- 2. C. W. Wilmsen.(1985). *Physics and Chemistry of III-V compound* Semiconductor Interfaces (Plenum, New York)
- M. Hong, M. Passlack, J. P. Mannaerts, J. Kwo, S. N. G. Chu, N. Moriya,
 S. Y. Hou, and V. J. Fratello, (1996) Low interface state density oxide-GaAs structures fabricated by in situ molecular beam epitaxy, *J. Vac. Sci. Technol.* 14, p.2297
- G. S. Chang, W. C. Hwang, Y. C. Wang, Z. P. Yang, and J. S. Hwang, (1999) Determination of surface state density for GaAs and InAlAs room temperature photoreflectance, *Journal of Applied Physics*, 86(3), p.1765
- F. H. Pollak and H. Shen. (1993). Modulation spectroscopy of semiconductors: bulk/thin film, microstructures, surfaces/interfaces and devices, *Mater. Sci. Eng.*, R. 10, p.275
- 6. S. L. Tyan, M. L. Lee, Y. C. Wang, W. Y. Chou, and J. S. Hwang.(1995). Investigation of modulation-dopedGaAs/AlGaAs single quantum well by photoreflectance , *J. Vac.*

Sci. Technol. B 13, p.1010

- Y. C. Wang, W. C. Hwang, Z. P. Yang, G. S. Chang, and J. S. Hwang. (1996). Studied of latticed-matched InGaAs/InAlAs single quantum well by photoreflectance spectroscopy and wet chemical etching, *Solid State Communication 111(4)*, p.223
- 8. Chung-Chih Chang, Ming-Seng Hsu, Yueh OuYang, and Yau-Chyr Wang. (2009) Optical properties of the modulation doped InGaAs/InAlAs quantum well, SPIE Vol. 7420, p.74200s-1
- 9. Neidert, Robert E. (1980). Dielectric constant of semi-insulating gallium arsenide, *Electronic Letters*, V.16 Issue 7, p.244

