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不穩態多諧振盪器與光訊號的電磁干擾研究 
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摘要 

本文推導不穩態多諧振盪器電磁干擾的理論公式並與實測值比較，結果相當吻合並獲結論：電磁

干擾訊號其振福與頻率越大則干擾的雜訊越大，此結論也適用於雷射光訊號的電磁干擾。 

關鍵詞：雜訊，諧波，不穩態振盪器，輻射能，電磁干擾，訊號雜訊比。 
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Abstract 

Theoretical formulae are derived to model the time-domain and frequency-domain characteristics 

of the noise induced in an astable multivibrator by electromagnetic interference (EMI). The theoretical 

results are then compared with the experimental measurements. The experimental and numerical results 

reveal that the magnitude of the EMI-induced noise is related to the pulse height, the output load, the 

parasitic capacitance, the interference frequency and the interference amplitude. Moreover, it is shown 

that the harmonic noise increases with an increasing interference amplitude or interference frequency 

and the results of EMI are good agreements to the laser beam signal. 
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1. Introduction 

A typical communication system contains numerous electronic components, such 

as resistors, filters, capacitors, multivibrators, and so forth. Moreover, a 

communication system comprises three main parts, namely a transmitter, a 

transmission channel and a receiver. The transmission channel may take various forms, 

including a pair of wires, a coaxial cable, a radio wave or even a laser beam. However, 

various undesirable effects may occur in the course of signal transmission. For 

example, attenuation is inevitable over long transmission distances, and leads to a 

reduced signal strength at the receiver end. More serious, however, are the effects of 

distortion, interference and noise, which appear as sudden abnormalities in the signal 

shape. One of the main causes of signal distortion and noise is that of electromagnetic 

interference (EMI) produced by the electromagnetic induction or electromagnetic 

radiation of an external source.  

Interference may be manifested in a phenomenon known as “crosstalk” [1], in 

which the conversation of others can be heard when the cell phone is used, or may 

result in the reception of two separate radio stations at the same frequency. 

Furthermore, the interference produced by a cell phone (for example) may result in 

visual or audio distortion of a nearby television set or computer screen. In all of these 

examples, the intention of the original signals of the interfering device is somehow 

lost, and they create instead a form of electromagnetic pollution, which can result in 

unanticipated and undesirable effects. When electronic components are designed, it is 

necessary to develop high quality products capable of functioning successfully in 

complicated EMI-influenced environments [2-3] without themselves inducing 

interference in other nearby electronic appliances. Consequently, the literature 

contains many investigations, both experimental and theoretical, into the modeling 
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Fig. 1: Basic experimental circuit.  

 

and suppression of EMI in numerous common applications [4-14].  

 

The present study performs an investigation into the EMI-induced noise 

spectrum of a conducting wire (CW) in an astable multivibrator (AM). In a normal 

indoor environment, the intensity of the low-frequency electromagnetic waves is 

greater than that of the high-frequency electromagnetic waves (e.g., 0.03 μT and 

0.0067 μT, respectively). Thus, the present study mainly focuses on the effects of 

low-frequency EMI on the response of the AM. Theoretical formulae are derived to 

model the time-domain and frequency-domain characteristics of the noise spectrum. 

The theoretical results are then compared with experimental measurements. 

 

2. Interference Theory 

    This section develops analytical models of the basic electronic circuit of the 

AM, the amplified EMI signal coupled into the AM via a CW, and the resulting noise 

spectrum, respectively. Fig. 1 and 2 show the basic electronic circuits of the AM 

device. 

2.1 DC analysis and designed circuit 
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Fig. 2: Output circuit used for AC analysis. 

 

In Fig. 1, the differential circuit (R3 and C3) is designed to change the output 

frequency of the basic circuit. Since the elements are not completely symmetric in the 

circuit, when VCC (experimental VCC =3 V) is plugged in, if Q1 is switched on and Q2 

is switched off, then VCE1 is equal to 0.2 V. Moreover, if the circuit is in a stable state, 

VC2 will be charged initially to 2.1 V and will then discharge. For the loop containing 

VCC, R1, C1 and VCE1, when C1 is recharged, the base voltage of Q2 becomes positive 

and increases gradually until Q2 switches on. The voltage VCE2 then reduces from 2.8 

V to 0.2 V. From the preceding discussions, it follows that 

8.27.01.2V1.2V BE1CE2(off) 
.
                                  (1) 

Meanwhile, the voltage VBE1 is given by 

0VVV BE1C2CE2 
,
                                               (2) 

9.11.22.0VBE1  .                                              (3) 

Thus, Q1 turns off for a short time. 

As for the case of a monostable multivibrator, the charge and discharge times of 

the capacitors in an AM are given by 

,CR693.0T 111   for Q1 on, Q2 off time                                 (4) 

,CR693.0T 222   for Q2 on, Q1 off time                                (5) 
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When 2121 CC ,RR  , the square wave period, TAM, is expressed as 

  RC386.1CRCR693.0TTT 221121AM   .                        (6) 

For Q1 on, Q2 off time  For Q2 on, Q1 off time   

Design 
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   

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8.2
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2.2 EMI coupling analysis 

The interference source considered in the present study has the form of a coil 

wound on a ferromagnetic toroid containing an air gap. A CW is positioned in the air 

gap and induces an EMI voltage of magnitude Veff when a current is passed through 

the coil. Moreover, the magnetic field in the air gap also induces a current in the CW. 

This current is amplified by a 73.98 dB low-noise pre-amplifier so that it can be 

detected by an oscilloscope and is then connected with the AM in series. The resulting 

EMI interference is detected initially as radiated noise and is then coupled in series 

into the AM in the form of conducted noise. The EMI signals are transmitted to the 
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oscilloscope via the circuit coupling and are then passed to a spectrum analyzer in 

order to generate the time-domain and frequency-domain plots of the interference 

signals.  

In performing the present experiments, the EMI frequency was varied in the 

range of 300 Hz to 1 kHz, while the amplitude of the interference was varied between 

0.3 V and 1.0 V. The experimental system was shielded within a metal case in order to 

suppress the effects of external noise. The amplifier and current source were both 

powered by batteries. In addition, the signal analyzer (HP E4440A) was controlled by 

a PC via an IEEE-488 bus. The magnetic field density and flux density generated in 

the air gap of the ferromagnetic toroid are given respectively as [15] 

 
gg

g
r

NI
H

 






00

0

2
,

                    (13) 

  dvBHdvHP gggrB
2

1

2

1 2

0
,
                  (14) 

where μ0 is the permeability of free space, μ is the permeability of the ferromagnetic 

material, I0 is the intensity of the current flowing through the coil, r0 is the mean 

radius of the toroid, lg is the width of the air gap, and PrB is the magnetic energy in the 

air gap. Note that PrB represents the average energy per second of the interference on 

the CW, and can be either calculated or measured directly. Fig. 3 shows the equivalent 

circuit of the ferromagnetic toroid. 
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Fig. 3: Equivalent circuit of ferromagnetic toroid. 

 

In general, any periodic signal can be represented by the following complex 

Fourier series: 
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In the present study, the input signal of the ferromagnetic toroid has the form of a 

periodic square wave (see Fig. 4). Hence, the following Fourier transform applies: 
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Substituting Eqs. (17) and (18) into Eq. (15) gives 
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In Fig. 3, the following admittance can be obtained: 
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Fig. 4: Square wave electromagnetic interference signal acting on ferromagnetic 

toroid. 

 

From Eq. (13), it can be shown that 
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where Δz is the interfered length of the CW. In Fig. 2, the signal output to the 

oscilloscope or signal analyzer, Vout, has the form 

T t0 

Vi(t) 
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where Ri is the input resistance of the measured appliance, and K1=Ra//(1/hoe)// RC2 for 

a small value of Cce. 
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From the above, it can be shown that 
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where C5 is the effective induction coefficient. 

2.3 Noise analysis 

When a current is passed through the wire wrapped around the ferromagnetic 

toroid, the CW in the air gap induces a pulse voltage in the transistor circuit, which in 

turn generates a noise spectrum in the AM. Fig. 5 shows the typical response wave 

acquired by the oscilloscope for a periodic pulse of period T. Note that the figure 

shows both the experimental results and the numerical results for comparison  

 

 

 

 

 

 

 

 

 

Fig. 5: Measurement and simulation results for typical periodic pulse function 

generated by periodic EMI signal with period T. 

purposes. The response pulse can be analyzed by taking the discrete Fourier 

transformation of function A (the pulse height), i.e.,   
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Note that in the equations above, n is an integer, ω=2πf=2π/T, a  is the attenuation 

factor of the exponential function, and A (i.e., A1 or A2) is the amplitude of the EMI 

signal induced by the CW. The amplitude spectrum of the EMI current can be 

obtained by plotting Sn against the discrete frequencies, ωn. Note that the square of 

Sn has dimensions of A
2
 and corresponds to the current power spectrum Siλ(fn) over a 

duration 2T [16]. 

Regarding the parasitic capacitance, the Norton equivalent output circuit has the 

form shown in Fig. 6. Let Vce=VC and Cce=C. Thus, it can be shown that 
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Fig. 6: Simplified representation of EMI output port in Fig. 2. 
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where iLcoea RRRhRR ///////1// 20  , and ΔVc is the variation in the voltage across 

the capacitor. Taking the Fourier series expansions of ΔVc and in gives 
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Thus, it can be shown that 
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As a result, the noise power spectrum, SΔVc(fn), of the voltage induced by the EMI 

signal is given by 
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From Eqs. (34) and (40), it can be shown that 
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The total noise power can be obtained by summing SΔVc(fn) over all possible 

integers, n. To identify the relative magnitudes of the various harmonic components, 

the current analysis commences by finding the value of A (i.e., the pulse height) from 

the measured power spectral intensity of the fundamental harmonic and then evaluates 

the power spectral intensities of the higher-order harmonics. Adopting this approach, 

the experimental response wave shown in Fig. 5 can be transformed directly into the 

noise spectrum presented in Fig. 7. Equations (33) and (46) reveal that the magnitude 

of the EMI-induced noise is governed by the pulse height, the output load, the 

parasitic capacitance, the interference frequency and the interference amplitude.  
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Fig. 7: Typical noise spectrum response. 

 

The basic output frequency of an AM circuit has the form of a sine wave. Generally 

speaking, the effects of the 10 kHz basic output frequency on the noise power 

spectrum of the AM can be mitigated using an impedance-matching method. Fig. 8(a) 

shows the output equivalent circuit of the EMI signal passed to the oscilloscope or 

signal analyzer, where RO1=1/hoe //RC2// RL// Ri=49.41 Ω. Meanwhile, Fig. 8(b) shows 

the output equivalent circuit of the basic oscillating sine wave of the AM, where 

RO2=1/hoe //Ra// RL// Ri=24.98 Ω. The output powers of the EMI and basic AM signals 

are given respectively by 
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From Eqs. (47) and (48), it can be seen that PAM/PEMI=1.98E-4. In other words, the 

basic output power of the AM is negligible compared to that of the EMI-induced 

signal and can therefore be ignored. 
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       Fig. 8: Output equivalent circuits of (a) EMI signal and (b) AM signal. 

3. Results and Discussion 

As described above, Fig. 5 shows a typical pulse function generated by a periodic 

EMI signal with a period T. Using Eq. (33), the following parameter values were 

assumed: V0=1.17 V (at time t=0), V0=1.28 V (at time t=T/2), μ0=4πE-7 H/m, 

μr=4000, N=500, F=500 Hz, Rω=0.52 Ω, r0=0.09 m, gl =0.005 m, Ra=50 Ω, 

Cω=6.558E-10 F, C=220E-6 F, Δz=0.01 m, d=0.001 m, 1/hoe=30 KΩ, Rc2=5 kΩ, 

C5=0.155, XC=1/(2πfC), RL=220 KΩ, L=1E-4 H, Cce=12.77E-8 F, RL=220KΩ, 

T0=0.4981T, f=500 Hz, ω=2πf and Ri=50Ω. It is shown in Fig. 5 that a good 

qualitative agreement exists between the simulation results and the corresponding 

measurement results. In simulating the noise spectrum of the interfered AM using Eq. 

(46), the attenuation factor of the exponential function was assigned a value of 

a =8622. Fig. 7 presents the experimental results obtained for the noise spectrum 

induced by an EMI signal in the form of a square wave with an amplitude of VP=1.0 

V and a frequency of f=500 Hz. Having obtained the experimental noise spectrum, an 

experimental data point was selected in order to inversely derive the amplitudes A1 

and A2 of the corresponding EMI current. Applying a fitting technique, A1 and A2 were 
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determined to be A1=310.88 mA and A2=318.78 mA, respectively. A good agreement 

is observed between the two sets of results (see Fig. 7). To further investigate the 

effect of EMI on the noise spectrum induced in the AM, the amplitude of the AC 

interference signal was varied in the range of 0.3~1.0 V while the interference 

frequency was maintained at a constant value of f=500 Hz. Fig. 9 compares the 

corresponding experimental and simulation results for the odd-order harmonic 

components in the noise spectrum. Note that the simulated values of A1 range from 

91.86 mA to 310.88 mA, while the values of A2 range from 94.19 mA to 318.78 mA. 

In all cases, a good agreement is observed between the simulation results and the 

experimental data.  

Table 1 compares the measured and simulated values of the maximum noise 

power spectral intensity induced by a square-wave EMI signal with a constant 

frequency of f=500 Hz and various amplitudes in the range of Vp= 0.3 ~ 1.0 V. 

Meanwhile, Table 2 compares the experimental and simulation results obtained for the 

maximum noise power spectral intensity given a square-wave EMI signal with various 

frequencies in the range of f = 300~1000 Hz and an amplitude of Vp= 1.0 V. 

 

 

 

 

 

 

 

 

Fig. 9: Experimental and simulation results for odd-order harmonics of noise 

spectrum induced by EMI interference with frequency of 500 Hz 

and amplitude of Vp= 0.3 V to 1.0 V. 
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Fig. 10 presents the experimental and simulation results obtained for the odd-order 

harmonic components of the noise spectrum as a function of the interference 

frequency. Although a -3 dB difference is observed between the two sets of results, the 

significant effect of the EMI frequency on the induced noise is clear in both cases.  

By tuning the amplitude and frequency parameters, then the same accuracy as that 

shown in Fig. 9 can be obtained in Fig. 11 and Table 3. Fig. 9 shows the difference 

between the experimental and simulation results for the variable amplitude  

 

 

 

 

 

 

 

Fig. 10: Experimental and simulation results for odd-order harmonics of noise 

spectrum induced by EMI interference frequency of 300~700 Hz and 

amplitude of Vp= 1V. 

 

 

 

 

 

 

 

 

Fig. 11: Experimental and simulation results for odd-order harmonics of noise 

spectrum induced by EMI interference frequency of 300~700 Hz with 
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table 3. 

case that is less than that for the variable frequency case. In other words, the effect of 

the EMI amplitude is more significant than that of the EMI frequency. 

 

In general, the simulation and experimental results presented above indicate that 

the magnitude of the EMI induced by the CW varies as a function of the amplitude, 

frequency and period of the interference signal. The magnitude of the EMI is also 

affected by the collector resistance, the parasitic capacitance of the AM, the output 

load and the attenuation factor of the exponential function. Table 4 indicates the 

signal-to-noise (SNR) ratio of the AM for a reference signal of Si = 100 μA and 

various values of the interference amplitude.  

In the experimental setup used in the present study, the CW has a length of 1 cm. 

However, the length of the CW in a practical electrical circuit may exceed 1 m, and 

thus the EMI effect may potentially be magnified by a factor of 5000 times relative to 

that predicted in the current results. This will clearly have a significant effect on the 

circuit; particularly if the EMI is induced at the receiving terminal of a 

communication system. Assuming an induced current of 36.632 μA, a CW of length 1 

cm, and a load resistance of 49 Ω, the induced voltage is 1795 μV, which may be 

amplified by around 100 times in a practical system. According to EN55022 

(European Standard) and CISPR 11 (International Special Committee on Radio 

Interference), EMI should be limited to no more than 110 dBμV in the interference 

frequency range of 0.009~0.050 MHz (equivalent to a voltage of 316228 μV). To 

satisfy these conditions, the length of the CW in the system should be no longer than 

1.76 cm. By the way, as shown in the following, the basic results developed in this 

study can also be applied to the case of optical signal (wave length=632 nm) 
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interference. In Fig. 12, the electromagnetic wave is modeled a hollow PVC tube 

wrapped with a current-carrying coil, while the detector has the form of a PIN 

(Positive-Intrinsic-Negative) photodiode. Fig. 13 shows the Effect of forward DC 

interference voltage VP on detected voltage waveform. Input voltage to A1 and B1 

varies in the range of VVP 0 V6.0~ with step VVp 1.0 . Note that the direction 

of the induced magnetic field is the forward of that of the laser beam. It is seen that as  

 

Fig. 12: Experimental setup for EMI spectrum measurement. 
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Fig. 13：Effect of forward DC interference voltage VP on detected voltage 

waveform. 

the amplitude of the interference voltage increases, the intensity of the detected light 

signal also increases. 

 

4. Conclusions 

This study has employed a combined theoretical and experimental approach to 

characterize the noise spectrum of an astable multivibrator (AM) interfered with by a 

periodic EMI signal coupled into the AM via a conducting wire. In general, a good 

agreement has been observed between the measured interference results and the 

simulation results in both the time domain and the frequency domain. Overall, the 

results have indicated that the effect of the EMI on the AM is governed by parameters 

f, V0, μ0, μr, N, Rω, r0, gl , Ra, Cω, Cce, Ri, Δz, d, Rc, L, A1, A2, a, T0, RL and C, and the 

radiated power. Furthermore, it has been shown that the magnitude of the induced 

interference current increases as the frequency and amplitude of the interference 

signal increases. Of the two interference characteristics, the amplitude exerts a greater 
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effect on the induced noise spectrum than the frequency. In accordance with CISPR 

and EN norms, the results presented in this study imply that the conducting wires used 

in practical electronic circuits should not exceed a length of 1.76 cm.  

This study has considered the particular case of an AM. However, adapting the 

basic theorems developed in this study is a convenient approach to conducting the 

EMI analysis of all similar wavelength-based electronic devices, such as the laser 

beam signal. 
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Table 1: Comparison of experimental and theoretical results for maximum 

noise power spectral intensity for various values of interference 

amplitude. 

Frequency fixed , Amplitude variable (First harmonic wave) 

Vp(V) 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 

Frequency 

(Hz) 
500 500 500 500 500 500 500 500 

Induced Current 

A1(A) 
0.09186 0.12182 0.15083 0.18084 0.21085 0.24486 0.27487 0.31088 

Induced Current 

A2(A) 
0.09419 0.12492 0.15471 0.18548 0.21624 0.25110 0.28186 0.31878 

Measurement 

(dBmA/Hz
1/2

) 
29.9 32.4 34.3 35.8 37.2 38.4 39.5 40.6 

Simulation   

(dBmA/Hz
1/2

) 
30.01 32.47 34.33 35.90 37.23 38.53 39.54 40.61 

 

 

Table 2: Comparison of experimental and theoretical results for maximum 

noise power spectral intensity for various values of interference 

frequency. 

Amplitude fixed , Frequency variable (First harmonic wave) 

Frequency(Hz) 300 400 500 600 700 800 900 1000 

Measurement 

(dBmA/Hz
1/2

) 
38.3 39.6 40.6 41.4 42.1 42.6 43.1 43.6 

Simulation   

(dBmA/Hz
1/2

) 
38.72 39.82 40.61 41.18 41.62 41.95 42.21 42.42 

 

Table 3: Comparison of experimental and theoretical results for maximum 

noise power spectral intensity for various values of interference 

frequency and amplitude. 

Amplitude , Frequency variable (First harmonic wave) 

Frequency(Hz) 300 400 500 600 700 

Induced  

Current 

A1 (A) 

0.31088 0.31868 0.32888 0.33888 0.34826 

Induced  0.31878 0.32678 0.33724 0.34749 0.35711 
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Current 

A2 (A) 

Measurement 

(dBmA/Hz
1/2

) 
38.3 39.6 40.6 41.4 42.1 

Simulation   

(dBmA/Hz
1/2

) 
38.72 40.04 41.09 41.93 42.61 

 

 

Table 4: Relative SNR of current induced by EMI. 

VP (V) 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 

Induced 

Current 

A1(A) 

0.09186 0.12182 0.15083 0.18084 0.21085 0.24486 0.27487 0.31088 

Induced  

Current 

A2(A) 

0.09419 0.12492 0.15471 0.18548 0.21624 0.25110 0.28186 0.31878 

Induced 

Peak 

Current 

Ni (μA) 

18.605 24.674 30.554 36.632 42.709 49.596 55.673 62.966 

Relative 

SNR 

(dBμA) 

14.607 12.155 10.299 8.723 7.390 6.091 5.087 4.019 

Where SNR=20Log(Si/Ni), Si=100μA, Ni=((A1+A2)/2)/(5000) and f=500Hz. 

 

 

 


