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變動抽樣間隔全距管制圖在 Gamma 分配資料 

的監控績效評估 
Range Control Charts with Variable Sampling Interval under Gamma 

Distribution Assumption 

Pei-Hsi Lee1    Chih-Ping Chiang2 

摘 要 

在常態資料假設下，變動抽樣間隔全距管制圖能快速偵測出製程標準差的變異，然而，在真實產

業製程中，觀測值未必都會完全符合常態，也可能會呈現偏態機率分配，gamma分配是生產製程中最

常發生一種偏態機率分配，本研究秀出了變動抽樣間隔全距管制圖在gamma分配假設下的監控績效，

並與傳統的修華特全距管制圖進行比較，從比較結果發現到，不論是常態或gamma分配資料，變動抽

樣間隔全距管制圖都會有較佳的製程監控績效，不過，當母群體資料遠離常態假設時，變動抽樣間隔

全距管制圖的偵測能力就會變得不敏銳。 

關鍵詞：全距管制圖、適應性管制圖、統計性設計、馬可夫鏈方法、gamma 分配 

ABSTRACT 

Range control charts with variable sampling interval (VSI R chart) have better performance in 
monitoring the variation of process standard deviation under normality. However, the process observations 
may violate normality and follow a gamma distribution as a skewed distribution. This paper presented the 
performance of VSI R chart under gamma distribution assumption. A comparative study shows that VSI R 
chart has better performance than Shewhart R chart under normal and gamma distribution, but VSI R chart 
will become un-sensitivity when the population is far away from normality. 

Keywords: Range control chart; adaptive control charts; statistical design; Markov chain method; gamma 
distribution 
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1. Introduction 

Shewhart X  chart always assumes that the 
process standard deviation remains unchanged and 
then signals the mean variation. However, in real 
processes, the standard deviation may occur shifts. 
When the process standard deviation stays on an 
initial value, the process is in-control state, but if the 
standard deviation had shifted, the process state is 
out-of-control. The shift occurrence of the process 
standard deviation will cause the decreasing of the 
process capability and the increasing of the 
defective rate. If this shift of process standard 
deviation or variance can not be quickly detected, it 
is easy to cause higher loss. 

Shewhart range chart (R chart) and Shewhart s 
chart (s chart) can monitor variation of the process 
standard deviation or variance. An R chart monitors 
variation of standard deviation with sample range 
which is the difference between the largest and 
smallest observations of a sample of size n. An R 
chart is easer than an s chart in set up control limits, 
but its relative efficiency will be less than 85% of s 
chart when sample size n > 10 often employs on 
control charts. In addition, R chart and s chart are 
un-sensitivity in detecting small shifts.  

Many previous studies applied ideas of 
adaptive control charts to improve efficiency of 
Shewhart-type charts in detecting small process 
shifts. Adaptive control charts include: variable 
sampling intervals (VSI); variable sample sizes 
(VSS); variable sample sizes and sampling intervals 
(VSSI); variable sample sizes and control limits 
(VSSC) and variable parameters (VP) control charts, 
and their applications have successfully increased 

the sensitivity of X  chart in detecting small 
shifts[3,7-11,17,18, 21-25,31,32]. Although 
Costa[9,10] and Chou et al.[6] had performed the 

designs of joint adaptive X  and R charts and 

indicated joint adaptive X  and R charts have the 
best efficiency when both mean and variance occur 
small shifts. However, previous literatures never 
clear evaluated performance of adaptive R charts 

without jointing other X  charts. 

Statistical process control (SPC) methods are 
often based on two assumptions: first, the sample 
observations are statistically independent; second, 
the process observations follow a normal 
distribution. Violation of the normality assumption 
can cause a serious problem when applying control 
charts in process monitoring. Burr[1] notes that the 
usual normal theory based control limit constants 

are very robust to the non-normality assumption and 
can be employed unless the population is extremely 
non-normal. Kao & Ho[13] examined the 
performance of an R chart and found the R chart is 
robust to non-normality. Torng & Lee[30] presented 
the performance of Tukey’s control chart under 
non-normality. Chen & Cheng[4] and Chen[5] 

studied respectively the designs of X  chart and 

VSI X  chart under non-normality from the cost 
viewpoint. Lin & Chou[14-17] had presented the 
performances of the adaptive control charts under 
non-normality. Torng & Lee[29] had examined 

performances of double sampling X  charts (DS 

X  charts) and adaptive control X  charts and 

found DS X  charts had good performance as well 

as adaptive control X  charts under non-normality. 

VSI chart changes sampling interval of 
Shewhart chart to monitor process. When the 
sample point is close to the center line, the chart is 
to use the long sampling interval to take sample. If 
the sample point heavily deviates the center line but 
does not fall out the control limits, short sampling 
interval (h2) is used to monitor the process. VSI 
chart can shorten the time to signal a process 
variation, and it is easer to use than other adaptive 
charts. In real industry, the process observations 
always follow a skewed distribution. In this study, 
we selected a gamma distribution as the skewed 
distribution to examine and compare the 
performance of VSI R charts under gamma 
distribution assumption with Shewhart R chart. 

2. Range control charts with variable 
sampling interval 

A random sample of size n is taken from the 
population and the range of this sample is defined as 

minmax xxR 
. 

A VSI R chart uses two different sampling 
intervals. When the sample range R is close to the 
average range, VSI R chart is to use the long 
sampling interval (h1) to monitor the process 
standard deviation. However, if the sample range R 
heavily deviates the average range but does not fall 
out the control limits, short sampling interval (h2) is 
used to monitor the process standard deviation. 

A VSI R control chart as figure 1 employs 
warning limits and control limits to divide the chart 
into three regions: in-control region, warning region 
and out-of-control region. Let respectively k and w 
be as the control limit and the warning limit 
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coefficients of VSI R control chart, the center line, 
control limit and warning limit of VSI R control 
chart are 

    
    

  02

032

032





ndCL

nwdndUWL

nkdndUCL





         (1) 

where 0  is the standard deviation of an 

in-control process; CL, UCL and UWL are center 
line, the upper control limit and upper warning limit; 

 nd2  is a coefficient for sample size n, that can 

be estimated by   0RE ;  nd3  is an another 

coefficient for sample size n, it can be obtained by 

  0RV . Tippett[28], Mahoney[20] and Kao 

& Ho[13] had presented the calculations of  nd2  

and  nd3  when the population was following 

normal distributions and non-normal distributions. 

Figure 1 A VSI R char and its control procedure 

Assumed standard deviation of the initial 
process is an in-control state. First sampling will 
take a sample size n to calculate the sample range R 
and plot the sample range R on the control chart. 
From the 1st sample point falls in in-control region, 
interval of 2nd sampling will be h1, and then 2nd 
sample range is plotted on chart. The 2nd sample 
range falls in warning region, so the 3rd sampling 
will use short interval h2, and plot the sample range 
on chart. The 3rd sample point falls in in-control 
region, and then the next sampling uses interval h1 
to take sample. From the 4th sample point falls in 
in-control region, the 5th sampling will use h2 to 
take sample for monitoring of standard deviation. 
For 5th sampling result, the sample range falls out 

the control limit, and then the chart indicates that 
the process standard deviation is out-of-control. 
Assumed n0, h0 and k0 are the sample size, sampling 
interval and control limit coefficient of a Shewhart 
R chart, respectively, when the h1 = h2 = h0, n = n0 
and w = k = k0, the VSI R chart will become a 
Shewhart R chart. 

3. Design of VSI R charts under gamma 
distribution assumption 
3.1 d2 and d3 values of gamma distribution 

The gamma distribution, denoted by G(a,b), 
has the probability density function 

   
  0,  ,0    ,

exp
,

1








bax
ab

bxx
baxf

a

a

g                                  (1) 

where the a and b are respectively the shape 
and scale parameters, and    is a gamma 

function. The mean and variance of a gamma 
distribution are ab and ab2, respectively. The values 
of d2 and d3 of gamma distribution can be obtained 
with a simulation approach, and the simulation 

procedure was coded with Matlab R2007a. This 
simulation procedure is as follows: 

(1) Generate n data from G(a,b) and calculate the 
sample range R.  
(2) Repeat step (1) 100,000 times to obtain 100,000 
sample range R.  
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(3) Calculate the expected value R  and standard 

deviation R  of 100,000 sample ranges, 

respectively.  

(4) Calculate values of d2 and d3 by 2abR  

and 2abR , respectively. 

3.2 Performance indicators 

Tagaras[27] presented several statistical 
indicators of adaptive control charts, such as: 

1. Average Time to Signal (ATS), which is 
defined as the expected value of the time from the 
start of the process to the time when the chart 
indicates an out-of-control signal. ATS represents a 
measure of the false alarm rate. 

2. Adjusted Average Time to Signal (AATS), which 
is defined as the expected value of the time from the 
occurrence of an assignable cause to the time when 
the chart indicates an out-of-control signal. AATS 
represents the detection time of control chart when 
the process mean has shifted. 

Assumed the initial state of a process is in 
control, and the process standard deviation is 

0  . When an assignable cause occurs, the 

process standard deviation shifts from the 0   

to 01   , where   is shift size 

coefficient and can be estimated by 01   . A 

case of   = 1 indicates the process standard 

deviation is an in-control state. If   > 1, the 

01   . That is to say the process standard 

deviation had shifted, and the quality of products 

had become inferiority. For   < 1, the 01   , 

it indicates the quality of products had be superior. 
In general, a case of   < 1 can not occur in real 

process unless the process had already been 
improved. Therefore, control charts only detect 
shifts of   > 1. 

Lin & Chou[17] provided an easy approach to 
calculate performance indicators of adaptive control 
charts, and their approach can also be applied on 
VSI R control charts. The ATS and AATS of a VSI 
R control chart can be calculated from Markov 
chain method, which includes the following three 
transition states: 

State 1. The process is in control and the 
sample point falls in the in-control 
region. 

State 2. Process is in control and the sample 
point falls in the warning regions. 
State 3. The process is out-of-control. 

Let Q be state transition probability matrix 

   
   











2221

1211

qq

qq
Q                                                                  (2) 

where  ijq  indicates that when a shift   

is given, the probability that the sample range falls 
in the jth region of the ith control chart. Here, j=1 is 
the in-control region, and j=2 is the warning region. 

If the i = 1, using the long sampling interval (h1) 
monitors the process, and when the i = 2, the short 
sampling interval (h2) will be used in process 
monitoring. Calculations of four elements of Q are 
as following: 

         







 















 nwdnd

F
UWL

FUWLRPqq 32

0
012111             (3) 

     

       







 








 

































nwdnd
F

nkdnd
F

UWL
F

UCL
FUCLRUWLPqq

3232

00
012212

               (4) 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

變動抽樣間隔全距管制圖在 Gamma 分配資料的監控績效評估 

23 

where   is relative range, given by 

 R ;  F  is the cumulative distribution 

function of  , assumed process observations are 
following a gamma distribution with parameters a 

and b, and then the  F  is 

       



















dxbaxFbaxFbaxfnF
n

ggg

1

,,,                                   (5) 

where n is sample size,  baf g ,  and 

 baFg ,  are the probability density function 

and cumulative distribution function of a gamma 
distribution with parameters a and b, respectively. 

Let h = [h1 h2] be sampling interval vector, I be 
an identity matrix with order 2 and rT = [r1 r2] be 

defined as a steady-state probability vector. When 
the process is in control, the probability in the 
in-control and warning regions of the control chart 
can be used to calculate rT. Let P be the probability 
matrix of an in-control process as in the following: 













22

11

1

1

pp

pp
P                                                                     (6) 

where pi will be conditional probability: the 
probability that the given sample range is not falling 

out the control limits but falling in the central region. 
Calculations of p1 and p2 is as following 
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The calculation of rT will be 
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The ATS of VSI R control chart can use Markov chain method to calculate as following: 

  hQIrT 1
ATS

                                                                    (9) 

If the position of the shift within the sampling interval is uniformly distributed, and the another indicator 
AATS will be 

  hhQIr T 5.0~AATS 1  
                                                       (10) 

where 
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The sampling interval  1hE  of VSI R control chart for an in-control process are 
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     1ARL1ATS1  hE                                                   (11) 

3.3. Statistical design model 

The four design parameters of a VSI R chart 
are chosen taking into account a design model with 
the aim of making it comparable with R chart and 
other control charts. The objective function and 
constraints of design model that will be set for the 
design of a VSI R chart are: (1) that its in-control 

ATS takes a standard value τ, and 370.4 is always 
used to be this standard value; (2) that its expected 
sample size and sampling interval are equal to the 
values of a Shewhart R chart, respectively; and (3) 
that its out-of-control AATS value has to be 
minimized. Therefore, the design model is the 
following: 
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                                                               (12) 

The parameter k will be equal to the control 
limit coefficient k0 of a Shewhart R chart. The 
decision variables of this design model only include 
three parameters: w, h1 and h2. 

Before solving of two models, the shift size 
coefficient   and sample size n must be 

determined first. This study assumes   = 1.1 and 

n = 3 and 5 for solving in view of fast detecting 
small shifts. Matlab optimization toolbox applies a 
nonlinear constrained optimization algorithm for 
solving of nonlinear models. Matlab optimization 
toolbox had been used to determine the parameters 
of control charts[12,19,29]. The performance 
indicators were coded with Matlab R2007a, and 
optimization toolbox is then applied to solve design 
parameters of VSI R charts. 

4. Comparison and discussion 
4.1. Choose the parameters of gamma 

distributions 

In this paper, we refer to Stoumbos & 
Reynolds[26], Calzada & Scariano[2], Lin & 
Chou[17] and Torng & Lee[29,30], and choose a = 
4, 2 and a fixed b = 1 for the gamma distribution. 

Figure 2 shows the gamma distributions we 
have selected and their corresponding normal 
distributions that have the same mean and variance. 
When a increases, the gamma distribution gets 
closer to a normal distribution. Through the use of 
these two types of gamma distributions, we can 
understand the effect of skewness change on the 
performances of control charts. These values of d2 
and d3 under gamma distribution assumption can be 
obtained with a simulation approach in section 3.1, 
and these values for sample size n = 3 and 5 are 
listed in table 1. 

(a)  (b) 

Figure 2. The probability density function for various gamma and normal distributions: (a) G(4,1) and N(4,4); 
(b) G(2,1) and N(2,2) 
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Table 1. These values of d2 and d3 under gamma and normal distribution assumptions for n = 3 and 5 

 n = 3 n = 5 
 d2 d3 d2 d3 
 G(4,1)  1.6488  0.9586  2.2604  0.9642
G(2,1) 1.5983 1.0293 2.2065 1.0567
N(0,1) 1.1280 0.8530 1.6930 0.8880

4.2. A comparative study of VSI R charts 

In this section, a comparative study is 
conducted to evaluate the performance of VSI R 
charts and Shewhart R chart (SR). The false alarm 
rate of each chart is set to be equal, and so is the 
in-control expected sampling interval of each chart, 
such that the comparison can be conducted under 
the same criteria. This study choose n = 3 and 5 and 
h0 = 1 to be the criteria of in-control sample size and 
sampling interval, respectively, and choose   = 

1.1, 1.2, 1.3, 1.4, 1.5, 1.75 and 2 to measure the 
performance of control charts. The shift sizes 

5.11    were defined as small standard 

deviation shifts, and shift sizes 5.1  were 

defined as large shifts. 

Table 2 provides the optimal design parameters 
of VSI R charts and R chart (SR) for various 
population probability distributions and the 
performance of all control charts. The in-control 
ATS values of all control charts are approximate 
370.4. Table2 shows that AATS values of VSI R 
charts are smaller than values of SR charts for all 
population probability distributions. AATS values of 

VSI R charts under gamma distributions are larger 
than the value under normality. 

In summary, performance of VSI R chart is 
better than Shewhart R chart for detecting standard 
deviation shifts under gamma distributions. When 
the population is far away from normality, the VSI 
R chart and Shewhart R chart will become 
un-sensitivity in detection of standard deviation 
shift. 

5. Conclusions 

In this study, we chose gamma distributions to 
evaluate the performance of VSI R chart, and 
compare its performance with Shewhart R chart. 
From the evaluation of statistical performance, we 
have found VSI R chart is not robustness to 
non-normality, but it still has better performance 
than Shewhart R chart for all shift sizes. If the 
monitoring variable follows a skew distribution, the 
observations should be transformed to follow a 
symmetrical distribution as a normal distribution 
before applied VSI R chart monitors the 
observations for increasing the detecting ability of 
standard deviation shift. 

Table 2 Values of the ATS and AATS of VSI R charts and Shewhart R charts 

 n = 3 n = 5 
 N(0,1)  G(4,1) G(2,1) N(0,1) G(4,1)  G(2,1) 
 SR VSI  SR VSI SR VSI SR VSI SR VSI  SR VSI

n 3 3  3 3 3 3 5 5 5 5  5 5 
k 3.363 3.363  9.557 9.557 6.647 6.647 3.237 3.237 10.026 10.026  6.791 6.791
w - 0.647  - 4.360 - 2.471 - 0.500 - 4.980  - 2.690
h1 1.00 1.29  1.00 1.10 1.00 1.10 1.00 1.37 1.00 1.10  1.00 1.10
h2 - 0.10  - 0.10 - 0.10 - 0.10 - 0.10  - 0.10
  ATS 

1.00 370.64 370.38  370.20 370.59 370.44 370.49 370.38 370.38 370.16 370.70  370.16 370.16
 AATS 
1.10 134.18 124.10  172.42 166.12 194.30 187.82 113.42 99.99 157.24 149.78  185.58 177.64
1.20 61.67 52.88  92.45 85.43 112.15 104.50 46.27 35.95 78.21 70.26  101.57 92.46
1.30 33.48 26.79  55.09 48.76 70.19 62.96 23.06 15.97 43.80 37.37  60.44 52.09
1.40 20.51 15.45  35.62 30.21 46.95 40.53 13.27 8.35 26.89 21.22  38.64 31.45
1.50 13.74 9.84  24.56 19.99 33.16 27.57 8.49 4.98 17.75 13.13  26.22 20.15
1.75 6.57 4.34  11.90 10.20 16.59 12.65 3.79 2.08 7.92 5.09  12.12 8.13
2.00 3.98 2.56  7.03 4.89 9.92 7.04 2.23 1.30 4.42 2.60  6.83 4.12
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