
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Regularized Least Squares LDA and Its Application
in Text Classification

ZunXiong Liu
School of Information Engineering

East China Jiaotong University
Nanchang, China

e-mail:liuzunx@tom.com

LiHui Zeng
School of Information Engineering

East China Jiaotong University
Nanchang, China

e-mail:wssycmissyou@163.com

Abstract— Linear Discriminant Analysis (LDA) is a well-known

technique for dimensionality reduction and classification, while
the classical LDA formulation fails when the total scatter matrix
is singular, encountered usually in undersampled problems. In
this paper, regularized Least Squares LDA (RLS-LDA) based on
the elastic net, is proposed to handle the problems, and the
resulting models are robust and sparse. Firstly, the theories about
linear regression and regularization are explored, and the
equivalence relationship between the least squares formulation
and LDA for multi-class classifications under a mild condition is
summarized. Secondly, the construction of RLS-LDA is
presented. Performance evaluations of these approaches are
conducted on benchmark collection of text documents. Results

demonstrate the effectiveness of the proposed RLS-LDA and it’s
the RLS-LDA based on the elastic net that is better than others.
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I. INTRODUCTION

This paper focuses on optimizing on the least squares LDA
objective function with L1-norm, L2-norm and the elastic net
on the parameters. There are currently significant interests in
the related problems with high-dimensional and undersampled
data. The sample sizes are much smaller than the data
dimensionality for undersampled problems, such as face
images, microarray expressions data and text documents. With
them the classical LDA is not applicable because the
corresponding total scatter matrices are singular. Many
extensions of classical LDA have been proposed in the past to
overcome the singularity problem, including subspace LDA[1
2], Uncorrelated LDA[3], Orthogonal LDA[3], regularized
LDA[4 5], penalized LDA[6], and so on.

LDA can be applied for dimensionality reduction, in which
each derived feature is a linear combination of all the original
features, the equivalence relationship between the least squares
formulation and LDA under a mild condition are put
forward[7]. The coefficients stored in the transformation matrix
are typically nonzero, i.e., the resulting models are often not
sparse. However, sparsity often leads to easy interpretation and
good generalization ability of the resulting model[8]. It’s
known that the linear regression with L1-norm, also named the
Least Absolute Shrinkage and Selection Operator (Lasso)[9],
can automatically select variables for the model, resulting in
the sparse model. There are other regularized LS with different

coefficient penalties, such as L2-norm and p-norm. Based on
them, the elastic net comes true with some advantages. The
elastic net algorithm is introduced into the least squares LDA,
used for dimensionality reduction with high dimensional and
sparse data. Through classification experiments on benchmark
collection of text documents, the prediction performances with
different regularized methods are compared. The results
demonstrate the effectiveness of the proposed sparse least
squares LDA.

II. LINEAR REGRESSION TECHNIQUES

A. Linear Discriminant Analysis(LDA)

The objective of LDA is to perform dimensionality
reduction while preserving as much of the class discriminatory
information as possible. Assume we have a set of d-
dimensional samples , 1{( )}n

i i ix y  , where d

ix  and {1,2,..., }iy k de-
notes the class label of the i-th sample, n is the sample size, d is
the data dimensionality, and k is the number of classes. The
data matrix 1 2[ , ,..., ]nX x x x is partitioned into k classes
as 1 2[ , ,..., ]kX X X X , where id n

iX


 , in is the size of the i-th class
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 . For the k class problem, (k-1) projection

vectors  1, 1iw i k ， should be found, arranged in columns
of a projection matrix 1 2 1[ , ,..., ]kW w w w  , so that any observation

ix can be represented a linear combination of the projection
vectors, the encoding coefficients are T

iW x . In Linear
Dimensionality Analysis, three scatter matrices, called within-
class, between-class and total scatter matrix are defined as
follows:
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   is the global centroid. It follows from the

definition that t w bS S S  .
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B. Linear Regression

Linear regression problems are usually coped with ordinary
least squares(OLS) approximations, where the response
variable y is approximated by the predictor in X(both the
observations and the targets are centered), and the coefficients
for each variable of X are contained in w , calculated by
minimizing the following cost function:

2( ) TL w y Xw  (4)
Where 1 2[ , ,..., ]kW w w w is the weight matrix, the solution for W
can be given by

1( )T

LS
w XX Xy


 (5)

However, if some bias is allowed, estimators can be found with
lowed mean square error than OLS when tested on an unseen
set of observations. A common way to implement this is by
introducing some constraints on the coefficients w. The
described methods use constraints with the L1-norm, the L2-
norm of w , or both.

The lasso is a penalized least squares method, imposing a
constraint with L1-norm of the regression coefficients. Thus,
the lasso estimates

lasso
w are obtained by minimizing the lasso

criterion
2

1
arg min T

lasso
w

w y Xw w   (6)
Replacing the L1-norm in the constraint with the L2-norm

gives
2 2

ridge 2
arg min T

w
w y Xw w   (7)

Lasso has proven to be a very powerful regression and
variable selection technique, while it has a few limitations. If
d>n, i.e., there are more variables than observations, lasso
choose a maximum of n variables, which is clearly
unsatisfactory. The elastic net regression method[10] was
developed to overcome these drawbacks. The elastic net
penalty is a convex combination of the constraints from the
ridge and lasso penalties. For any non-negative and  , the
elastic net estimates

EN
w are given as follows

 2 2
12

(1 ) arg min T

EN
w

w y Xw w w       (8)

which is the lasso problem for 0 .Given a value of , in
the elastic net setting, Lars returns the solutions corresponding
to all possible values of  with the computation cost of a single
least square fit.

III. MOTIVATION AND DETAILS OF REGULARIZED LS-LDA

A. Relationship between ULDA and Multivariate Linear
Regression

The classical LDA is not applicable to the text documents,
where the total scatter matrix is singular. ULDA is a natural
extension of classical LDA for undersampled problems. The
optimal ULDAW of ULDA is computed by solving the following
optimization problem[3]:

 ULDA arg min )
W

trace
L L +

b t
W (S (S ) (9)

The optimal ULDAW consists of the top eigenvectors of
t b

S S


corresponding to the nonzero eigenvalues[3], provided that the
total scatter matrix

t
S is singular.

In Least Squares Linear Discriminant Analysis[11] ，
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centroid of the i-th class, is the global centroid and e is the
vector of all ones of length n. Then
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t
H can be computed via the singular value
decomposition(SVD) of the matrix, i.e. T
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Let
1 2

U = (U ,U ) be a partition of U , where n t
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2
U ,so 2

U lies in the null space of
t

S ,i.e., T

2 t 2
U S U = 0 .For

t b w
S = S + S and

w
S is positive semi-definite, we can obtain
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Denote
t k-1 T

t 1 b
B =Σ U H (14)

B can be computed via the singular value decomposition(SVD)
of the matrix, i.e.,

•
TB = P ΣQ , P and Q are orthogonal and

t k
•

Σ is diagonal. From Eq. (10), it follows that
••

-1 T -1 T T T T

t 1 b 1 t b
Σ U S U Σ = BB = PΣ(Σ) P = PΣ P (15)

The multivariate regression model with the class label as
the output following form:

T
y xw
 (16)

A popular approach for estimating w is the least squares,
via the minimization of the following objective function:

2~ ~

( ) TL w Y X  W (17)

Where
~ ~ ~ ~

1 2[ , ,..., ] d n
nX x x x   as the centered data matrix X and
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The optimal weight matrix W for multivariate linear regression
in Eq. (5) becomes 

LS t b
W = S H

Recall that in ULDA, the optimal transformation matrix
ULDA

W consists of the top eigenvectors of +

t b
S S corresponding to

the nonzero eigenvalue.The relationship between
ULDA

W and

LS
W is argued following. From Eq. (12), Eq. (13) and Eq. (14),
the matrix +

t b
S S can be decomposed as follows:
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Thus, the optimal transformation matrix of ULDA is given
by

U

-1

LDA 1 t q
W = U Σ P (18)

Since only the first q diagonal entries of
b

 is nonzero,

q
P consists of the first q columns of p. On the other hand,
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Where , q q

q bq


   consists of the first q rows and the first q

columns of ,
b



 , respectively. It follows that

U
  

0.5 T

LS LDA bq
W = W Σ ,0 Q (19)

Where Q is orthogonal. It is clear from Eq. (19) that the
difference between

ULDA
W and

LS
W lies in the diagonal matrix 0.5

bq
Σ .

When the matrix
bq

 is an identity matrix of size q, that is,
LS

W and
ULDA

W are essentially equivalent, under a mild
conditionM1[7]

rank(
t

S ) = rank(
b

S ) + rank(
w

S ) (20)
which holds in many applications involving high-dimensional
and undersampled data.

B. Regularized LS-LDA

Based on the equivalence relationship established in the last
section, ULDA(the natural extension of classical LDA)
formulation can be extended using the regularization technique.

Regularization is commonly used to control the complexity
of the model and improve the generalization performance.
Linear regression using the L2-norm regularization, called
ridge regression[11], minimizes the penalized sum-of-squares
cost function. By using the class indicator matrix ~

Y in Eq. (17),
we obtain the L2-norm regularized least squares LDA

formulation (called “LS-LDA2”) by minimizing the following
objective function:

2~ ~ 2

2 2( , ) T
L W Y X W W    (21)

Where 1 2,, ...,
k

W w w w   ,and 0 is the regularization parameter.

In mathematical programming, it is known that sparseness
can often be achieved by penalizing the L1-norm of the
variables. It has been introduced into the least squares
formulation and the resulting model is called lasso. Based on
the established equivalence relationship between ULDA and
least squares, we derive the L1-norm least squares LDA
formulation (called“LS-LDA1”) by minimizing the following
objective function:

2~ ~

1 1
( , ) T

L W Y X W W    (22)

Where 1 2,, ...,
k

W w w w  ,and  is the regularization parameter.

The elastic net proposed by Zou and Hastie solves a
regression problem regularized by the L1-norm and L2-norm in
a fast and effective manner. We derive the elastic net least
squares LDA formulation (called “LS-LDAEN”) by minimizing
the following objective function:

2
2

2 1
( , , ) T

EN
L W Y XW W W     

 (23)

The optimal
j

w,for 1 j k  , is given by
2

2

2 1
arg min( )

j

T

j j
w

w Y Xw w w 
   



(24)

IV. EXPERIMENT RESULTS
In this section, a collection of multi-label data sets is used

for simulation experiments, showing the effectiveness of our
proposed algorithm. In the experiments, five methods including
ULDA, as well as LS-LDA and its regularization versions LS-
LDA1, LS-LDA2 and LS-LDAEN are compared in performance.
All these LDA methods are used to project the data into a
lower-dimensional space where the K-Nearest-Neighbor(KNN)
algorithm is employed for classification with the multi-label
data, and the results are consistent with our the theoretical
analyses. Here standard document collections, TDT2 are used
as experimental data. The TDT2 corpus consists of data
collected during the first half of 1998 and taken from six
sources, includeing two newswires (APW, NYT), two radio
programs (VOA, PRI) and two television programs (CNN,
ABC). It consists of 11201 on-topic documents which are
classified into 96 semantic categories. In this dataset, those
documents appearing in two or more categories are removed,
leaving us the largest 30 categories with 9394 documents in 30
categories, as described in Table 1.

TABLE I. 30 SEMANTIC CATEGORIES FROM TDT2 USED IN
EXPERIMENTS

Category Num of doc Category Num of doc Category Num of doc
20001 1844 20021 74 20056 66
20002 1222 20023 167 20065 63
20005 58 20026 72 20070 441
20008 71 20032 131 20071 238
20009 52 20033 145 20074 56
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Category Num of doc Category Num of doc Category Num of doc
20012 226 20037 65 20076 272
20013 811 20039 141 20077 120
20015 1828 20044 407 20086 140
20018 104 20048 160 20087 98
20019 123 20047 123 20096 76

The samples are high dimensional, whose categories are
taken from 2class to 10class. These data are partitioned
randomly, so the training set consists of two-thirds of the whole
class samples, leaving the rest making the test dataset. The
whole class samples are processed with the same
dimensionality reduction techniques, one of the LDA
approaches. Then KNN classifiers are applied to assign the
testing samples to some category. The splitting was repeated 10
times. The resulting average accuracies of different algorithms
are summarized in Figure 1.
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Figure 1. Comparison of all algorithms on text document datasets.

From figure 1, it can be observed that the regularized
algorithms including LS-LDA1, and LS-LDA2, and LS-LDAEN
perform much better than ULDA and LS-LDA without
regularization, and the proposed LS-LDAEN performs the best
in this data set. The figure 2 and 3 shows coefficient traces w

for a linear model fit in the LS-LDA1 and LS-LDAEN.
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Figure 2. Coefficient Traces for LS-LDA1
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Figure 3. Coefficient Traces for LS-LDAEN

Figure 2 and 3 tell that the coefficients for LS-LDAEN are
smaller than that for LS-LDA1, and the LS-LDA1 coefficients
are unstable, while LS-LDAEN coefficient traces are good.
Moreover, the LS-LDAEN results in sparse and stable model

with variable selection technique, variable with coefficients of
zero are effectively omitted from the model.

In summary, the experiments above show that

 condition(M1) is more likely to hold for high-
dimensional data;

 LS-LDA is equivalent to ULDA when condition(M1)
holds;

 LS-LDA and ULDA achieve similar classification
performance even when condition(M1) does not hold.

Thus, LS-LDA can be applied as a general least squares
formulation for LDA for multi-class classifications. From
figure 1, we can observe from the figure that the regularized
methods perform much better than ULDA and LS-LDA, and
LS-LDA1 is comparable to LS-LDAEN. The sparse formulation
LS-LDAEN performs the best for this data set.

V. CONCLUSION
ULDA for multi-label classifications can be formulated as a

least squares problem under a mild condition ,which tends to
hold for undersampled problem. Based on the equivalence
relationship extensions, the Regularized Least Squares LDA is
proposed in this paper. The experiments on a collection of
multi-label datasets are conducted to validate the effectiveness
with the presented algorithm. Experimental results show that
the performance of the proposed the regularized Least Squares
LDA effectively omitted the variables from the model. The
proposed regularized Least Squares LDA performs well for the
text document data set. As the extension of the research, the
effectiveness of this the regularized Least Squares LDA model
for learning from labeled and unlabeled data, will be examined.
The regularized Least Squares LDA model will be generalized
into feature extraction in the web page relevance analysis.
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