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Abstract—The paper studies a discrete-time Bernoulli feedback 
queue with negative customers and multiple working vacations. 
The server works at a lower rate rather than completely stop 
service during the vacation period, after completing the service, 
the customer may leave the system with probability (0 1)ε ε≤ < , 

or feedback with probability 1 ε−  waiting for the next service. 
The rule of service is the first coming first served and the 
working vacation policy follows exhaustive service, negative 
customers only remove the positive customers one by one at the 
end and do not stay for some time. By using the matrix-geometric 
solutions, we obtain the equilibrium conditions of the system, 
then solve the steady-state distributions and stochastic 
decomposition of the queue length in the system. 

Keywords- discrete-time queue; negative customer;  working 
vacation; feedback; matrix-geometric solution. 

I.  INTRODUCTION  

Working vacation (WV) is firstly advanced by Servi and 
Finn[1],which is rooted in performance analysis of gateway 
router in fiber communication networks. Its characteristic is   
that the server works at a lower rate rather than completely 
stop service during the vacation period. In recent years, the 
queuing model with working vacations has been conducted in-
depth study by many scholars. Such as [2].Along with the 
development of computer communications technology, we 
have greatly promoted the research and application of it. Take 
the web service for example, to keep the servers functioning 
well, virus scan is an important maintenance activity for the 
servers. It can be performed when the servers are idle. We 
look upon this type of work as a working vacation. It can also 
be performed when the servers are busy .We regard it as a 
regular service (the busy period). When virus scan is done, the 
servers will enter the idle state again and wait the use requests 
arrive. We can see it in literature [3].Using the queuing theory 
to solve the model above, we can easily apply mathematical 
method to optimize this model and make the solution more 
convenient. 

In the communication system with external interference, 
when the receiver find the data was transmitted loss or error, 

the data will be required feedback to transfer again. 
Considering the conditions above, we introduce the negative 
customers and the Bernoulli feedback into the working 
vacations. The two Strategies are also studied by many people, 
such as [4-5].The we consider a discrete time queuing system 
with the Strategies above, which forms this paper. It makes the 
paper having more practical value. 

II. MODEL DESCRIPTION AND EQUILIBRIUM CONDITION 

For any real number [ ]0,1 ,x∈ we let 1 , 0,1,x x n= − = .If we 

suppose n− represent a moment before n and n+ represent a 

moment after n , ( , )n n−   and ( , )n n+ are two very short time , 

both would be generally negligible. The model we studied 
here is as follows: 

a) Two types of customers ,positive and negative , 

arrive separately and simultaneously at the end of slot ( , )n n− , 

they arrive according to geometrical arrival process with 
probability p  and q respectively.  

b) The beginning and ending of service occur at slot 

division point t n= , the distribution of service time Sb in a 

regular busy period and Sv in a working vacation period are 

geometrically distributed 
1 1

vP{S } , P{S } , 1, 0 , 1.k k
b b b v v b vk k kμ μ μ μ μ μ− −= = ⋅ = = ⋅ ≥ < <  

c) A server begins a working vacation at the epoch 
when the queue becomes empty, the distribution of vacation 

time V is    1P{ } , 1, 0 1.kV k kθ θ θ−= = ⋅ ≥ < <  

To make sure, we suppose the beginning and ending of 

vacation occur at the epoch ( , )n n+ . The server will take 

service at the rate of bμ  and when a service completes and 

there are no customers (means the positive customers, for the 
negative customers only takes the positive customers away 
without any delay) in system, the server will enter into a 
vacation. Customers arrive during the vacation and will be 
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served at the rate of vμ  in the order of arriving at the system. 

When a working vacation ends, if there are no customers (the 
above) yet in the queue, another vacation is taken; Otherwise, 

the server switches service rate from vμ to bμ , and a regular 

busy period starts.  
d) If the positive customers are not taken away when 

they are receiving service, then they will leave the system with  
probability (0 1)ε ε< ≤  after the service, and feedback to the 

end of the queue with probability 1 ε−  for the next service 

e) Aassume that inter-arrival times, service times and 
working vacation times are mutually independent. In 
addition,the service follows FCFS . 

Based on the description above, the model we discussed 
is the late arrival system with immediate entrance (see in[6]). 

Let nL+  be the number of customers in system at time n+ . 

According to above assumption, a customer who finishes 

service and leaves at t n= does not reckon in nL+ , let 

the system is on a working vacation period at time ,

the system is on a regular busy period at time .
n

n
J

n

+

+

⎧
= ⎨
⎩

0，

1，

Then {( , }n nL J+ ≥),n 0 is a Markov chain with the state space 

{(0,0)} {( , ) : 1, 0,1}.k j k jΩ = ∪ ≥ =  

Using the lexicographical sequence for the states, the 
transition probability matrix can be written as the following 
block form: 

00 01

10 1 0

20 2 1 0

3 2 1 0

3 2 1 0

(1)

A A
A A A
A A A A

A A A A
A A A A

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥Ρ = ⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎦⎣

 

Where   

( ) ( )00 01 20, , ,v bA p pq A pq pq A pq pqθ θ μ ε μ ε Τ= + = =

( )10 ,v v b bA pq pq pq pq pq pqμ ε μ ε μ ε μ ε Τ= + + + +  

0

( ) ( )
,

0
v v v v

b b

pq pq pq pq
A

pq pq
θ μ μ ε θ μ μ ε

μ μ ε
⎛ ⎞+ +

= ⎜ ⎟
+⎝ ⎠

 

3 1, ,
0 0

v v v v

b b

pq pq
A A

pq
θμ ε θμ ε θδ θδ

μ ε δ
⎛ ⎞ ⎛ ⎞

= =⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

2

( ) ( )
,

0
v v v v

b b

pq pq
A

pq
θ δ μ ε δ θ δ μ ε

η μ ε
⎛ ⎞− −

=⎜ ⎟
−⎝ ⎠

  

And 

v v v v v v

b b b b b b

pq pq pq pq pq

pq pq pq pq pq

δ μ ε μ ε μ μ μ ε

δ μ ε μ ε μ μ μ ε

Δ

Δ

= + + + +

= + + + +

 

, ,b b b v v vpq pq pq pq pq pqη μ ε μ ε η μ ε μ ε
Δ Δ

= + + = + +

, .b b

b b

pq pq
pq

μ μ εθβ α
θ η μ ε

Δ Δ +
= =

+
Based on the above, 

{( , }n nL J+ ≥),n 0  is a quasi birth and death chain. We can 

regard (1) as the degenerative GI/M/1 type structure matrix 

(see in [7] ). We can deal with it by using the matrix-

geometric solutions. So the minimal non-negative 
solution R of matrix equation  

2 3
0 1 2 3 (2)R A RA R A R A= + + +         

is of important effect, the solution is called the rate matrix.  
Lemma 1   If 1,α <  the cubic equation 

3 2) [ ) 1] ( ) 0b b b b b b bpq r pq r pq r pqμ ε η μ ε δ μ ε μ με+ − + + − + + =（ （

has three different real roots ** *1, 1,0 1.r r r= < − < <  

Proof: we can easily verify 1r = is one root of the equation, 

suppose it as 2( 1)( ) 0,r ar br c− + + =  so we can get ,bb η=   

, ( ),b b ba pq c pq pqμ ε μ μ ε= =− +   the discriminant Δ  is more than 

0 of  2 0ar br c+ + =  . So the equation has two real roots, they 

are * ( ) (2 ), ( ) (2 )b b b br pq r pqη μ ε η μ ε= − Δ = − + Δ- .Due 

to 1α < ,
2( )b b pqη μ εΔ < + .So we can easily verify 

* 1,0 1r r< − < < .  

Lemma 2   The cubic equation 

3 2 1
) [ ) ] ( ) 0v v v v v v vpq x pq x pq x pqμ ε η μ ε δ μ ε μ με

θ
+ − + + − + + =（ （

has three different real roots * **
1 1 10,0 1, 1.r r r< < < >  

Proof: the plot is figure 1, let the equation be ( ) 0F x = , so 
3 2( ) ( ).v vF x pq x bx cx d pq f xμ ε μ ε= + + + =（ ） where  

1/
, , .v v v v v v

v v v

pq pq pq pqb c d
pq pq pq

η μ ε δ μ ε θ μ μ ε
μ ε μ ε μ ε
− + − +

= = =

Evidently 1 1,θ > then 0, 0, 0b d c> > < , so ( ) 0f x = is a 

real coefficient cubic equation and (1) 0, (0) 0f f< > , then 

there are at least one root denoted as 1r and 10 1r< < . 

Because of ' 2( ) 3 2f x x bx c= + + ， let '' ( ) 0f x = ,we 

get 3x b= − ， suppose 3g b= − ,due to [7] and figure 

1,we know ( ) 0f x = has only three real roots * **
1 1 1, ,r r r  

and * **
1 1 10,0 1. 1,r r r< < < >  evidently ( ) 0F x =  is 

equivalent to ( ) 0f x = ,so the theorem is proved and the roots 

of equation can be seen in the appendix. 
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 Theorem 1 If 1,α < then the cubic equation (2) has the 

minimal non-negative solution        
1 2 (3)
0

r r
R

r
⎡ ⎤

= ⎢ ⎥
⎣ ⎦

  

where 1r can be seen in appendix， 

1
2

1 1)[ ( )]b b

rr
r pq r r

β
η μ ε

=
+ +(1-

 and 10 1.r< <       

Proof: 0 1 2 3, , ,A A A A are all upper triangular matrices，we 

suppose 11 12

220

r r
R

r
⎡ ⎤

= ⎢ ⎥
⎣ ⎦

, substituting R and ( 0,1,2,3)iA i = into 

equation (2) , gives the following set of equations: 
3 2

11 11 11 11
3 2

22 22 22 22
3 2

12 11 11 11
2 2

11 22 12 11 11 22 22

[ ( ) ( ) ] (4.1)

) ( ) (4.2)

) ( )

( )( ) ( )

v v v v v v

b b b b b b

v v v v v v

b b b

r pq r pq r r pq
r pq r pq r r pq
r pq r pq r r pq

pq r r r pq r r r r r

θ μ ε η μ ε δ μ μ ε
μ ε η μ ε δ μ μ ε
θμ ε θ η μ ε θδ θ μ μ ε

η μ ε μ ε

= + − + + +
= + − + + +
= + − + + + +
− + + + +

（

（

12 12 (4.3)brδ

⎧
⎪
⎪
⎨
⎪
⎪ +⎩
To obtain the minimal non-negative solution of (2) , 

taking 22r r=  in equation (4.2)  (the others can be seen in 

lemma 1). In equation (4.1) , we can obtain 11 1r r= (The 

others can be seen in lemma 2 and 10 1r< < ). Substituting 

22r r=  and 11 1r r=  into (4.3)  together with (4.1)  and 

(4.2) and simplifying it, we can get 12 12 2,r r r
Δ

= . 

Theorem 2 The Markov Chain ( MC ) { }n n
+ ≥（L ,J）,n 0 is 

positive recurrent if and only if 1.α <  

Proof : Based on Theorem 5.2.4 in [6]  , MC is positive 

recurrent if and only if the spectral radius ( ) 1SP R < , and set of 

equations ( ) ( )0 1 2 0 1 2, , [ ] , ,x x x B R x x x= has positive solution, 

due to Theorem 1,we know R is reversible ,so 

00 01
2

10 20 1 2 3

[ ]
A A

B R
A RA A RA R A
⎡ ⎤

= =⎢ ⎥+ + +⎣ ⎦
 

2
1 2

1 1 1

( ) ( ) )
( ) 1

( )
0 1

v v b b v v
v v b

b b
b b

p pq pq pq
pq pqr pqr r pq

r rr r
pqpq r

r

θ θ
θ μ με μ μ ε θ μ μεη μ μ ε

μ μεη μ ε

⎡ ⎤
⎢ ⎥+
⎢ ⎥

+ + +⎢ ⎥+ + − −⎢ ⎥
⎢ ⎥

+⎢ ⎥+ −⎢ ⎥⎣ ⎦

（
 

We can easily verify [ ]B R is a stochastic matrix which ensures 
that set of equations with coefficient matrix [ ]B R has positive 

solution. For example, let ( )0 1 2, ,x x x be balance probability 

vector of [ ]B R . Note that 1 1rα < ⇔ < and 0 1 2, ,x x x are all 

positive, so we have that 1( ) max( , ) 1SP R r r= < if and only 

if 1α <  

III. THE STEADY-STATE QUEUE SIZE AND ITS STOCHASTIC 

DECOMPOSITION  

If 1.α < , let ( , )L J+ be the stationary limit of ( , )n nL J+ , and 

its distribute function is denoted as 

00 0 0 1{ , }, ( , ) , , ( , ) .kj k k kP L k J j k jπ π π π π π+ + + += ∈Ω = == =  

Theorem 2 If 1,α < the joint probability distribution of 

( , )L J+ is  

00

1
1

1 2 1
0

0 1

( ),

, 1 (5)

, 1

v v
k

j k j
k

j
k

k

K

Kr r r k

Kr k

π μ μ ε

π

π

+

−
+ − −

=

+

⎧ = +
⎪
⎪ = ≥⎨
⎪
⎪ = ≥⎩

∑          

Where 

1

2 1 1

(1 )(1 )
.

(1 ) (1 )(1 )( )v v

r rK
r r r r r μ μ ε

− −
=

+ − + − − +
     

Proof:  With the matrix-geometric solution method in theorem 

5.2.4 (see [6] ), we have 1
10 11( , ) , 1,k

k R kπ π π+ + −= ≥ and 

00 10 11 00 10 11( , , ) [ ] ( , , ).B Rπ π π π π π+ + + + + += Substituting [ ]B R into 

the above relation, we obtain the set of equations 

00 00 1 2 10 11

10 00 10
1

11 00 2 10
1 1

11

( ) [ ( ) ] ( )

( )
[1 ]

( ) )
[ ]

( )
(1 )

v v b b b

v v

b b v v

b b

p pq r r pq pq r
pqpq

r
pq pqpq r

rr r
pq

r

π π η μ μ ε π η μ ε π
θ μ μ επ θ π π

μ μ ε θ μ μ επ θ π π

μ μ ε π

+ + + +

+ + +

+ + +

+

⎧ = + + + + + +
⎪

+⎪ = + −⎪
⎪
⎨ + +

= + −⎪
⎪
⎪ +

+ −⎪
⎩

（
 

Let 00π + as a constant, we can use it to express 10 11,π π+ + .From 

(3) , we can get the expression of kR .Substituting 1kR −  

and 1 10 11π π π+ +=（ ， ）into kπ , we obtain 

1
100

1 2 1
0

, 1.
k

k j k j
k

jv v

r r r r kππ
μ μ ε

+ −
− −

=

⎛ ⎞
= ≥⎜ ⎟+ ⎝ ⎠

∑               

Finally, constant factor 00π + can be determined by the 

normalization condition. 00 ( ).v vKπ μ μ ε+ = + Hence, we get 

the joint distribution in (5) . 

From (5) , we can obtain the state probabilities of a 

server in steady-state.  
* *

1 1 2( 0) (1 )( ( )(1 )), ( 1) .v vP J K r r r P J K rμ μ ε= = − + + − = =    

Where * 1
2 1 1[ (1 ) (1 )(1 )( )] .v vK r r r r r μ μ ε −= + − + − − +  

The marginal distribution of the steady-state queue length  

L+ at time n+ in system is as follows  

00 0 1{ 0} , { } , 1.k kP L P L k kπ π π+ + + + += = = = + ≥  
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y=f(x)
y 

x
g 

1 2x  

1x

2x

0
1r

*
1r * *

1r

( , ( ))G g f g

1r

From (5) ， we can get the probability generating 

function ( PGF )of steady-state queue length:  

* 1 2
1

1 1

( ) (1 )(1 )[( ) ] (6)
1 (1 )(1 )v v

rz r zL z K r r
rz rz rz

μ με+ = − − + + +
− − −

 

The average customers in system is 

* 1 2 1

1 1

(1 ) (1 )
( ) [ ]

1 (1 )(1 )

r r r r rE L K
r r r

+ − −
= +

− − −
 

Now, we give the stochastic decomposition structure of the 
steady-state queue length in system: 

Theorem 4  If 1α < and b vμ μ> ,the steady-state queue 

length L+ can be decomposed into the sum of two independent 

random variables:
0 dL L L+ += + , where 0L+ is the number of the 

steady-state customers in a corresponding classic Geo/Geo/1 
queue without vacation, and follows a geometric distribution 

with parameter1 r− ; additional queue length dL has the PGF:  

       *
0 1 2 1 1( ) [ (1 ) (1 )] (7)dL z K z z r r zδ δ δ= + + − −  

Where 

0 1 1 1 2 1 2( )(1 ), (1 ) , ( ).v v vr r r r r rδ μ μ ε δ μ ε δ= + − = − = + −
Proof:  With (6) , the P G F of the steady-state queue 

length L+ can be described as: 

0( ) (1 ) (1 ) ( ) ( ) ( ),d dL z r rz L z L z L z+ += − − =
 

Where ( )dL z is same to (7) . Note：In formula (7) , 

1 1
2

1

( )( )( )

[ ( )]
b v

b b

r p p r q q
pq pq r r

ε μ μδ
η μ ε

− + +
=

+ +
. 

For 10 1, , 0,b v br μ μ η< < > > so .02 >δ Then, we can 

verify that * 1
0 1 2K δ δ δ −= + +（ ），which prove that ( )dL z is 

actually a PGF . 

Theorem 4 indicates that dL is a mixture of three random 

variables * * *
0 0 1 1 2 2,b v dL K X K X K Xμ μ δ δ δ> = + + , 

where
0 1 20, 1,X X X= =  follows a geometric distribution 

with parameter 11 r− in the set of positive integer. Based on the 

above stochastic decomposition, we get means 
*

1 2 1

*
1 2 1

( ) [ (1 )],

( ) (1 ) [ (1 )].

dE L K r

E L r r K r

δ δ

δ δ+

= + −

= − + + −
 

A special case: We can prove the Geo/ Geo/1/WV queue can 
be regarded as this model of which 0, 1q ε= = , so this 

model extend the corresponding results in discrete time Geo/ 
Geo/1 queue with multiple working vacations. 

Appdendix 

From [8] , ( ) 0f x = can become 3 0y Py Q+ + = , where 
2

32 1
, .

3 27 3

bP c Q b bc d= − = − +  Evidently 0, 0.P Q< >  

We have known ( )f x has three different real roots, so 0D <  

We can solve ( ) 0f x = by formula

3 3

23 3

2 3 3

1

2

3

R g A B

R g A B

R g A B

ω ω

ω ω

⎧ = + +
⎪⎪ = + +⎨
⎪ = + +⎪⎩

 

where 
2 3

,
2 2 3

Q Q PA ⎛ ⎞ ⎛ ⎞= − + +⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

2 3

,
2 2 3

Q Q PB ⎛ ⎞ ⎛ ⎞= − − +⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

 

the discriminant  
2 3

2 3

Q PD ⎛ ⎞ ⎛ ⎞= +⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

. Using Matlab ,let 

, ,v m n xμ θ ε= = = .we can give any group of values of 

, , , ,p q m n x to calculate 1, 2, 3R R R .Among them, there must 

be one is less than 0, one is more than 1 and the third is 
between(0,1), so we can judge the value of * **

1 1 1, ,r r r .Take 

0.7, 0.5, 0.3, 0.2, 0.3p q m n x= = = = =  for example, 

we obtain 
13.4444, 56.5556, 23.5926, 116.8066,

457.0545, 6.8006 003,

2.2853 002 8.2466 001 ,

2.2853 002 8.2466 001 ,

1 2.9617, 2 16.8781 0.0000 ,

3 0.4720.

b c d P
Q D e
A e e i
B e e i
R R i
R

= = − = = −
= = − +
= − + + +
= − + − +
= = − −
=

  Evidently, * **
1 1 13, 2, 3r R r R r R= = = . 
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Figure 1.   
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