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Abstract—Twin support vector domain description(Twin-SVDD) 
classifier with the conception of relative distance was proposed in 
this paper. The preliminary SVDD model described the target 
dataset with one class by constructing a compact optimized 
hypersphere in feature space. And the model was effective to deal 
with problems of pattern classification with imbalanced dataset 
such as outlier detection. But only information about the positive 
class of dataset was used in the preliminary SVDD model. As for 
binary classification problem, inspired by the construction of 
Twin support vector machine where nonparallel planes were 
solved separately, the Twin-SVDD model was proposed. Two 
optimized hyperspheres which described positive and negative 
class of datasets were constructed separately in the Twin-SVDD 
model. So information about both classes of dataset was used. 
And then new classification decision-making function was 
constructed based on the parameters of the Twin-SVDD model 
with the conception of relative distance. At last, experiments were 
performed. Experimental results showed that the Twin-SVDD 
model was more effective than the preliminary SVDD model 
when dealing with pattern classification problems. And the 
proved classification decision-making function improved the 
performance of the Twin-SVDD model. 

Keywords-support vector domain description; twin support 
vector domain description; relative distance; pattern classification 

I.  INTRODUCTION 

Classical methods of pattern classification mainly included 
parametric models such as statistical testing method, Bayes 
discriminate method, Fisher discriminate method, log-linear 
regression model and so on[1-2]. In classical methods, the 
numbers of samples were usually assumed to be sufficiently 
large, and samples were assumed to be some known 
distribution. But samples are usually finite even deficient in 
practice, and distributions of samples are even unknown. So 
non-parametric pattern classification methods such as neural 
networks, clustering method, support vector machine(SVM) 
were proposed in recent years, which were based on sample 
dataset[3-6]. Data-driven classification methods were based on 
statistical learning theories, and the disadvantages of statistical 
asymptotic theory can be tided over. Main principle of data-
driven classification methods is to construct decision-making 
function by learning processes of the dataset of the objects with 
small or finite samples. Prior knowledge about the samples 
needed not to be known. Minimization of experimental risk is 

used in the neural networks predication method, which makes 
the total output error be minimized by adjusting the weights of 
the neural networks using some learning algorithms[3]. But 
several disadvantages of neural networks such as over-fitting 
phenomenon in learning processes, lack of generalization 
ability, and local extremum values limited their practical 
applications[7]. Cortes and Vapnik proposed SVM models by 
constructing a decision superplane that maximized the margin 
of two classes of samples, which minimized the structural risk 
[7-8]. The complexity of models and experience risk can be 
balanced effectively in the SVMs, and generalization ability of 
model was improved. Problems such as small number of 
samples, nonlinear map, high dimension description, and local 
extremum values can also be solved. So the SVMs are very 
suitable to be used in problems of pattern classification with 
small samples, approximation of functions and so on. 

Then some improved SVM models were proposed by 
different researchers. Suykens proposed Least squares SVM[9]. 
Zhang proposed Wavelet SVM[10]. Doumpos proposed 
additive SVM[11]. Jayadeva proposed Twin SVM[12]. Tax 
proposed support vector domain description(SVDD) model[13]. 
Applications of the SVM were also investigated. The principle 
of SVDD models was to construct a hypersphere with 
minimized the radius which contains the most of positive 
examples, and others samples named outliers were located 
outside of the hypersphere[13-16]. So computing tasks of 
SVDD models were to calculate the radius and center of the 
hypersphere using the given samples. The SVDD models based 
on data description method were mainly used to deal with the 
problem of one-class classification such as to describe dataset 
and detect outliers[13-14]. The one-class dataset was described 
by using the samples located at boundary of hypersphere in the 
SVDD models, which were named support vectors. In the 
preliminary SVDD model, dataset was described by an 
optimized hypersphere, and decision-making function was 
based on the hypersphere. Because only information about 
positive class of samples was used in the preliminary SVDD 
model, the model may be not the best. On the other hand, 
information about negative class of sample dataset was 
available. So in this paper, we proposed an improved SVDD 
model to solve pattern classification problem. Inspired by the 
Twin SVM model proposed Jayadeva where two hyperplanes 
need not be parallel as in SVM model[12,17], we proposed the 
Twin-SVDD model which constructed two optimized hyper-
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spheres to describe each class of positive and negative samples 
separately and new classification decision-making function was 
established based on the parameters of the Twin-SVDD model 
with the conception of relative distance. The paper was 
organized as following. Main classes of pattern classification 
methods were reviewed and the spirit of this paper was 
discussed in section one. The SVDD model to describe one 
class of samples was introduced in section two. The 
preliminary SVDD classification model was analyzed in 
section three. The Twin-SVDD model was proposed in section 
four. Then new decision-making function which was based on 
the parameters of the Twin-SVDD model with the conception 
of relative distance was discussed in section five. Experimental 
results of the proposed the Twin-SVDD model and the 
preliminary SVDD model were reported in section six. And 
conclusions were drawn in the last section.  

II. THE SVDD MODEL TO DESCRIBE ONE CLASS OF 

SAMPLES 

A compact high-dimensional hypersphere with minimized 
the radius is established in the SVDD model. The positive 
examples are included in the hypersphere, and outliers are 
located outside of the hypersphere. So the SVDD model can be 
used in describing the target dataset or detecting outliers. 
Following the preliminary SVDD model is reviewed[13-14].  

The objective of SVDD model is to describe the dataset by 
using the hypersphere with minimized radius R in feature space. 
In other words, the target samples are located in an optimized 
hypersphere. Let dataset{ , 1, 2,... }ix i N= be training samples. 
The mathematic form of the model is minimizing the function 

2( , )F R R=a with the constraint condition 
2 2

ix R− ≤a , 
( 1, 2,... )i N∀ = . Thinking the influence of outliers or noise, 
distances from samples{ , 1, 2,... }ix i N= to the center a of the 
hypersphere are not strictly smaller than R . But large distance 
should be penalized. Slack variable 0,iξ ≥ ( 1, 2,..., )i N=  
are introduced in the objective function. So the problem of 
minimizing the radius of the hypersphere can be shown as the 
following quadratic programming with inequality constraints 

2

1

2 2

min                                      

: , 0, 1, 2,...

N

i
i

i i i

R C

sub x R i N

ξ

ξ ξ
=

⎧
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⎨
⎪ − ≤ + ≥ =⎩

∑
a

   (1) 

where the positive constant parameter C is penalty factor. It 
controls the trade-off between the radius of hypersphere and 
the error. Using Lagrange multipliers algorithm for Eq.(1), the 
corresponding Lagrange function is 
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where 0, 0i iα β≥ ≥ are Lagrange multipliers. Lagrange 
function L should be minimized with respect to R , ia ,ξ , and 

maximized with respect to iα and iβ . Extremum conditions of 
Lagrange function L are 

0, 0, 0
i

L L L
R ξ
∂ ∂ ∂

= = =
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                        (3) 

such that 
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We can get 0 i Cα≤ ≤ from Eq.(6) due to 0, 0i iα β≥ ≥ . 
When Eq.(4-6) are substituted into Lagrange function Eq.(2), 
arrive at the dual form of the Lagrange optimization problem as 

1 1 1
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i i i i j i j
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where i jx x⋅ is the inner product of ix and jx . Usually the 
dataset is not distributed in the hypersphere ideally. Then inner 
product can be substituted by the kernel function in feature 
space. After solving the quadratic programming problem 
containing inequality constraints denoted by Eq.(7), parameters 
of the SVDD model { , 1,2,... }i i Nα =  are solved. The 
parameters satisfy following conditions 

2 2
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0
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α

α

⎧ − < → =
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− > → =⎪⎩
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a
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                     (8) 

III. THE PRELIMINARY SVDD CLASSIFIER FOR TWO 

CLASSES OF SAMPLES 

The SVDD model to describe one class of samples can be 
used in classification of samples of two classes. Consider 
dataset 1 1 2 2{( , ) ( , ) ... ( , )}N Nx y x y x y， ，， come from two 
different classes of samples, where N is the number of samples, 
and ix is the i th sample, 1iy = or 1− , 1, 2,...,i N= . Not 
losing generality, for the samples , 1,2,...,ix i l= , let 1iy = , 
and for the samples , 1, 2,...,ix i l l N= + + , let 1iy = − . In 
other words, { , 1,2,..., }ix i l= are positive samples, and 
{ , 1, 2,..., }ix i l l N= + + are negative samples or outliers. In 
the SVDD models, we assume that positive samples 

1 2{ , ..., }lx x x are located in the hypersphere, and negative 
samples 1 2{ , ..., }l l Nx x x+ + are outside of the hyper-sphere. 
Slack variable 0,iξ

+ ≥ ( 1, 2,..., );i l=  0,iξ
− ≥ ( 1,i l= +
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2,..., )l N+ are introduced in the objective function for each 
sample of both kinds of data similar with in one-class model. 
The problem of minimizing the radius of the hypersphere can 
be formulated by the following quadratic programming with 
inequality constraints 

2
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Using Lagrange multipliers algorithm for Eq.(9), we can draw 
the corresponding Lagrange function as 
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where 0, 0i iα β≥ ≥ are Lagrange multipliers. Similar with 
Eq.(2). Lagrange function L should be minimized with respect 
to , , ,i iR ξ ξ+ −a , and maximized with respect to iα and iβ . 
After computing the extremum conditions of Lagrange function 
L , dual form of the Lagrange optimization problem Eq.(10) 
are shown as following quadratic programming problem with  
inequality constraints 
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Let i i iyα α′ = , then we have 
1

1
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i
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=

′ =∑  and 
1
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Then Eq.(11) can be simplified as 
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Similar with Eq.(7), the quadratic programming problem 
containing inequality constraints denoted as Eq.(12) can be 
solved using the iterative multiplicative updating algorithm 
easily[18]. Then the radius R and center a of the hypersphere 
are sovled. So the dataset containing two classes of samples are 
separated by the hypersphere. And decision-making function of 
SVDD to classify a new sample can be constructed by the 
hypersphere. If a new sample x  is located in the hypersphere, 
it belongs to the positive class. Otherwise it belongs to the 
negative one. So the following decision-making function can 
be constructed as 

2

1 1 1

( ) sgn(

   (( ) 2 ( )+ ( )))
N N N

i i i j i j
i i j

y x R

x x x x x xα α α
= = =

=

− ⋅ − ⋅ ⋅∑ ∑∑
 (13) 

For a new sample denoted by x , if the computing result of 
Eq.(13) is ( ) 0y x ≥ , it belongs to the positive class. And if the 
result is ( ) 0y x < , it is outlier or negative sample. In order to 
determine the decision, R and center a of the hypersphere 
should be computed. In application, most of parameters iα are 
zero. Only part of parameters are non-zero. The samples 
corresponding the non-zero iα values are support vector. They 
determine the radius R center a of the hypersphere. the 
center a is calculated by Eq.(5). We assume that 0kα ≠ for 
some support vector kx . Then radius R of the hypersphere can 
be calculated as 

1

2
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N N N

k k i k k i j i j
i i j

R x x x x x xα α α
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If the inner product i jx x⋅ of ix and jx is substituted by 
kernel function ( , )i jK x x in feature space, the decision-
making function can be shown as 

2

1 1 1

( ) sgn(

( ( , ) 2 ( , )+ ( , )))
N N N

i i i j i j
i i j

y x R

K x x K x x K x xα α α
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=
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The kernel functions are usually constructed by mapping 
function which satisfied kernel conditions, and examples are 
linear kernel, polynomial kernel and Gauss kernel and so 
on[17]. 
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IV. THE PROPOSED TWIN-SVDD MODEL 

Similar with the preliminary SVDD model, sample dataset 

1 1 2 2{( , ) ( , ) ... ( , )}N Nx y x y x y， ，， come from two different 
classes of samples, where N is the number of samples. And ix

 
is the i th sample, 1iy = + or 1− , 1, 2,...,i N= . For samples 

, 1,2,...,ix i l= , let 1iy = + , and for samples , 1,ix i l= + , 
2,...,l N+ , let 1iy = − . One optimized hypersphere was 

constructed to describe positive sample dataset { , 1,ix i =
 

2,..., }l , and another hypersphere was constructed to describe 
negative sample dataset { , 1,ix i l= +

 
2,..., }l N+ separately. 

Slack variable 0,iξ
+ ≥ ( 1, 2,..., )i l=  and 0,iξ

− ≥ ( 1,i l= +  
2,..., )l N+ are introduced in objective function for each 

sample of both kinds of dataset similar with in the preliminary 
SVDD model because not all samples were located in both 
hyperspheres strictly. The problem of minimizing radius of the 
both hyperspheres of the Twin-SVDD model can be formulated 
by the following quadratic programming with inequality 
constraints 
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where positive constant parameters 1C and 2C are penalty 
factors. Using Lagrange multipliers algorithm for Eq.(16), we 
can draw the corresponding Lagrange function as 
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where 0, 0i iα β≥ ≥ are Lagrange multipliers. Lagrange 
function L should be minimized with respect to 1 2, ,R R  

1 2, ,a a ,i iξ ξ+ − , and maximized with respect to iα and iβ . Set 
partial derivatives 1 2 1 2, , , , ,i iR R ξ ξ+ −a a of Lagrange function 
L  to be zero give the following formula 
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Resubstituting Eq.(18-23) into Eq.(17) results in 
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And the dual form of the Lagrange optimization problem 
Eq.(16) are shown as following quadratic programming 
problem with inequality constraints 
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We noticed that parameters set { , 1,2,..., }i i lα =
 
and 

{ , 1, 2,..., }i i l Nα = +
 
can be solved separately in Eq.(25). 

The optimization problem Eq.(25) can be separated into two 
single SVDD with one-class samples such as 
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and  
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After computing parameters set { , 1,2,..., }i i lα = and 
{ , 1, 2,..., }i i l Nα = + , radius 1 2,R R and centers 1 2,a a of the 
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two hyperspheres to describe positive or negative sample 
dataset of Twin-SVDD model can be calculated similarly with 
in the preliminary SVDD model. For example, let non-zero 

kα belongs to the parameters set { , 1,2,... }i i lα = for some 
support vector kx , 1R and the centers 1a can be calculated by 
Eq.(14) and Eq.(20).  

V. DECISION-MAKING FUNCTION BASED ON THE 

CONCEPTION OF RELATIVE DISTANCE 

Eq.(7), Eq.(12), Eq.(26) and Eq.(27) are all some kind of 
quadratic programming problem with inequality constraints. 
These quadratic programming problem can be solved by many 
existing algorithms such as multiplicative updating algorithm, 
SOM and so on[18-19]. After the radius R and center a of the 
optimal hypersphere were solved in preliminary SVDD, we can 
choose that positive samples were assumed to be in the 
hypersphere of feature space, and negative sample to be out of 
the hypersphere when the models were used in classification 
prediction. The classification decision-making function is 
Eq.(15). We know, there is only one hypersphere that should be 
constructed in the preliminary SVDD model. A new sample 
must lie in or out of the hypersphere surely. But two 
hyperspheres will be constructed in the Twin SVDD model. So 
the decision-making function may be more complex in the 
Twin SVDD model than the decision function Eq.(15) in the 
preliminary SVDD model. Following we construct a new 
decision-making function for the Twin SVDD model based on 
the conception of relative distance. 

After training dataset of samples containing two classes, 
two hyperspheres in feature space determined by 1 1{ , }Ra

 
and 2 2{ , }Ra were known in the Twin SVDD model. Three are 
three possible cases that a new sample *x may encounter. There 
is non hypersphere that *x is located in. There is one 
hypersphere that *x is located in. And there are two 
hyperspheres that *x is located in. The case that the sample 

*x encounters can be decided using the following criterion 

      * , 1, 2.i ix R i− ≤ =a                              (28) 

If there is no inequality in Eq.(28) that that the sample *x  
satisfied, comes the first case. According the decision in the 
preliminary SVDD model, there is no class that the sample 
belongs to. But we want to know which class the sample more 
likely belongs to. In our method, the relative distances from the 
sample *x to the two hyperspheres were calculated by 
normalizing the distances firstly. Then the class is determined 
by comparing the relative distances from the sample *x and the 
two hyperspheres. Above thought can be written as following: 
If  

 

* *
1 2

1 2

x x
R R
− −

≤
a a

                            (29) 

the sample *x belongs to class one, and vise versa. The 
reasonability normalized relative distance can be illustrated as 
figure 1. Figure 1(a) shows a sample *x and two hyperspheres 
in two dimension space. Which hypersphere the sample 

belongs to more likely can not be detected straightly when the 
distances from the sample to the boundaries of the two 
hyperspheres are about equal shown as figure 1(a). When the 
distance from the sample *x to the two hyperspheres is 
normalized, if 2 1R R< and the distances from the sample to the 
boundaries of the two hyperspheres are about equal, the 
sample *x is more likely belongs to the first class shown as 
figure 1(b). In figure 1(b) *

1 1 1/d x R= −a , and 
*

2 2 2/d x R= −a . So in this case, the decision function is 
expressed as following: If Eq.(29) is satisfied, the sample *x  
belongs to the first class, otherwise it belongs to the second 
class. 

*x

1a1R 2a 2R

*
1x −a

*
2x −a

 
(a) 

1a 2a
1 1R =

2 1R =

*x

1d 2d

 
(b) 

Figure 1.  Sample
*x out of two hyperspheres 1 1{ , }Ra and 2 2{ , }Ra in 

two dimension space (a) and their relative location after normalized 
processing (b).  

In the second case, if the sample *x is located in the 
hypersphere{ , },( 1i iR i =a or 2) , it belongs to that class. In 
the third case, if there are two hyperspheres that *x is located in 
shown as figure 2(a), normalized processing was also adopted 
similar with in the first case. In figure 2(a), we can not detect 
which hypersphere the sample belongs to more likely when the 
distances from the sample to the centers of the two 
hyperspheres are about equal. Then the relative distances from 
the sample *x to centers of the two hyperspheres are used, if 

2 1R R<
 
and the distances from the sample to the centers of 

the two hyperspheres are about equal, the sample *x is more 
likely belongs to the first class similar with the first case shown 
in figure 2(b). 1d and 2d in figure 2(b) have same form as in 
figure 1(b). So if Eq.(29) is satisfied, the sample *x also belongs 
to the first class.  

We also noticed, in the second case, if the sample *x is 

located in the hypersphere 1 1{ , }Ra and it belongs to the first 

class, because *
1 1/ 1x R− ≤a and *

2 2/ 1x R− >a , the 

decision function Eq. (29) is also satisfied naturally. 
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2x −a

 
(a) 

 

1 1R = 2 1R =
1a 2a

*x
1d 2d

 
(b) 

Figure 2.  Sample
*x in two hyperspheres 1 1{ , }Ra and 2 2{ , }Ra in two 

dimension space (a) and their relative location after normalized processing (b). 

Based on above analysis, the uniform decision-making 
function for a new sample *x can be formulated as Eq.(29) in 
all three cases. And which case the sample *x encounters need 
not to be distinguished any more. The distance expression after 
kernel transformation in feature space is given incidentally. 
The distance between x and y induced by inner product after 
kernel transformation can be expressed as 

1

2( ( , ) 2 ( , )+ ( , ))x y K x x K x y K y y− = −         (30) 

VI. EXPERIMENTAL RESULTS 

Effectiveness of the proposed Twin SVDD model was 
demonstrated experimentally by artificial and benchmark 
datasets in this section. The performances of proposed models 
and the preliminary SVDD model were compared. The 
experiments designs were presented, and then experimental 
results on both artificial and benchmark datasets were reported 
individually. We mainly want to indicate the improvement of 
the learning and predicating processes of the Twin SVDD 
model over the preliminary SVDD model under same 
experiment conditions.  

A. Experiments Design 
1) Data: Two-spiral classification is one of classical 

problems in pattern recognition. Artificial dataset was 
produced using two-spiral functions. The concrete method to 
produce samples and experimental results were given in next 
subsection. As for experiments on prediction classification of 
credit scoring, three credit dataset about Australian, Germen, 

and Japan from the UCI Machine Learning Repository were 
used[20]. Experiments on the Australian benchmark dataset 
were reported.  

2) Models: Learning and predication processes of the 
preliminary SVDD Model Eq.(9) and the Twin-SVDD model 
Eq.(16) were compared. The concrete parameters should be 
given in advanced in these models, and they will be discussed 
along with experimental results.  

3) Comparing criteria: We want to illustrate the improve-
ment on the accuracy of learning and predicating of the 
proposed Twin SVDD model over the preliminary SVDD 
Model. In experiments, training error rate(%) and predicting 
error rate(%) were used to compare the performance. Because 
same numerical algorithm named iterative multiplicative 
updating algorithm was used to compute the parameters of the 
models in learning stages, and the dimensions of matrixes of 
the algorithm are the numbers of samples in experiments, the 
running times of algorithms were equal approximately. So the 
running times were not listed.  

4) Setup: All experiments were performed under following 
conditions: hardware CPU Intel Core-2 -Duo 1.6GHZ, RAM 
1024MB; software Windows XP and Matlab7.01.  

B. Experiments on Synthesized Dataset 
The samples of two-spiral are produced as following. 

Samples of the first class (marked as positive sample) were 
produced by 

 
1

1

( ) 10exp( 0.02 )cos(0.2 )

( ) 10exp( 0.02 ) (0.2 )

x t t t
y t t sin t

= −⎧
⎨ = −⎩

                (31) 

and the samples of the second class (marked as negative 
sample) were produced by  

2

2

( ) 10exp( 0.02 0.5)cos(0.2 )

( ) 10exp( 0.02 0.5) (0.2 )

x t t t
y t t sin t

= − +⎧
⎨ = − +⎩

       (32) 

Values of parameter t were from 0.2 to 40, and the step was 
0.2 in Eq.(31) and Eq.(32). There were two hundreds samples 
in each class. In experiments, the third polynomial function 
Eq.(33) and the Gauss function Eq.(34) were as kernel function. 
Both our experiments and references show that penalty factor 
parameter C (or 1C and 2C ) of SVDDs and parameter δ of the 
kernel function in Eq.(34) influence the accuracy of learning 
and predication for each model. Experiments of two models 
with different penalty factor parameter and different parameter 
δ of kernel function were performed.  

 
3

( , ) 1TK x y x y= +                                  (33) 

2

( , ) exp( )
x y

K x y
δ
−

= −                          (34) 

In our experiments, one hundred positive and one hundred 
negative samples selected randomly form the produced two-
spiral dataset were as same training samples in two models. 
And samples from the residual dataset were used as predicated 
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samples. We know if penalty factor parameter 1/C N< , two 
inequality constraints marked as Eq.(4-6) cannot be satisfied 
simultaneously. So parameters C should be a relative large 
positive constants satisfying1/ 1N C< ≤  . Total 36( 6 6)=× ×  
times experiments were performed. parameters 1C and 2C in the 
Twin-SVDD model were same as C in the preliminary SVDD 
Model. Parameters C andδ was set on a uniform coarse grid 
in the ( , )C δ space for Gauss kernel function, 
and 5 4 0[2 ,2 ,...,2 ]C − −= , 3[10 ,δ −=  2 210 ,...,10 ]− . We only list a 
group of experimental results. Table one showed a group of 
training error rate(TER) and predicting error rate(PER) of two-
spiral dataset using the preliminary SVDD (P-SVDD) and 
Twin-SVDD (T-SVDD) by the third polynomial kernel 
function and the Gauss kernel function with when 
( , )C δ are (0.25,1) . In table one, TER was the ratio of 
numbers of misclassified samples to numbers of the total 
learning samples. PER was the ratio of numbers of 
misclassified samples to numbers of the total predicated 
samples.  

TABLE I.  TRAINING AND PREDICTING ERROR RATES OF TWO-SPIRAL 
CLASSIFICATION PROBLEM  

Kernel 
Function 

P-SVDD T-SVDD 

TER(%) PER (%) TER(%) PER (%) 

Polynomial 13.5 16.5 11.0 13.0 

Gauss 11.0 13.5 10.5 12.0 

 
Table one showed the Twin SVDD model has lower TER 

and PER than the preliminary SVDD model under same 
experiment conditions such as samples training dataset and 
parameters of models. From groups of experimental results we 
also found that the Twin SVDD model improved the 
performance of the preliminary SVDD model when 
experimental conditions are same. 

C. Experiments on benchmark dataset 
Series of experiments on learning and predicting of credit 

scoring were performed. Experiment samples comes from 
databases of computer institute of UCI university[20]. There 
are three sample sets of individual credit approval about 
Australian, Germen, and Japan in the database. Following 
report experimental results using the Australian benchmark 
dataset. There are total 690 samples in the database. Number of 
positive sample (good credit) is 307, and others are negative 
sample (bad credit). There are fourteen attribute index of credit 
and one credit value to compose a sample. The dataset were 
preprocessed firstly. All attribute names and values have been 
changed to numeric symbols to protect confidentiality of the 
samples. So the index and credit result were expressed by 
numeric values accordingly. We noticed that the input vector 
which denotes each sample is a fourteen-dimension vector 
from the index of each sample. The inner product or inner 

product after kernel transformation of two vectors were 
computed using each component of both vectors. But there 
existed magnificent discrimination in the value ranges of each 
credit index in original database. In order to balance the effect 
of each component of the input vector (each credit index), all 
the values of index were normalized. Parameter C andδ in P-
SVDD and parameters 1C and 2C in the T-SVDD were set 
similar with experiments on synthesized dataset. In training 
stage, two hundreds positive and two hundred negative same 
samples were selected in both models. And samples from the 
residual dataset were used as predicated samples. Table two 
showed a group of TER and PER of the credit approval 
database about Australian using P-SVDD and Twin-SVDD by 
the third polynomial kernel function and the Gauss kernel 
function with when ( , )C δ are (0.25,1) .  

TABLE II.  TRAINING AND PREDICTING ERROR RATES OF THE CREDIT 
APPROVAL DATABASE ABOUT AUSTRALIAN  

Kernel 
Function 

P-SVDD T-SVDD 

TER(%) PER (%) TER(%) PER (%) 

Polynomial 24.50 28.46 22.50 24.62 

Gauss 22.25 26.15 20.75 23.33 

 
Representative results shown in table two illustrated that 

the Twin SVDD model has lower training error rate and 
predicting error rate compared with the preliminary SVDD 
models. We can see the accuracies of learning and predication 
for the real data of individual credit approval are not as well as 
those of the synthesized data of two-spiral. One reason is that 
the set of the real samples is not separable strictly. But similar 
with experiments on synthesized dataset, experimental results 
of learning and predicting the Australian credit approval 
database also showed that the Twin SVDD model improved the 
performance of the preliminary SVDD for pattern classification 
problems with real dataset under same experiments conditions 
such as samples dataset and parameters of models.  

VII. CONCLUSIONS 

Inspired by the Twin-SVM model proposed Jayadeva 
where two hyperplanes need not be parallel as in SVM model, 
the Twin-SVDDD classifier with relative distance conception 
was proposed in this paper. The preliminary SVDD model 
described target dataset with one-class by constructing a 
compact optimized hypersphere in feature space, and separated 
the positive samples with outliers by using the optimized 
hypersphere. But only information about the positive class of 
dataset was used in the preliminary SVDD model. As for 
binary classification problem, a new Twin-SVDD classifier 
that contains two hyperspheres was proposed in which two 
optimized hyperspheres described positive class of dataset and 
negative class of dataset separately. So information about both 
classes of dataset was used. And new classification decision-
making function was constructed based on parameters of the 
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Twin-SVDD model with the conception of relative distance. 
Experimental results showed that the Twin-SVDD model has 
relative low training error rate and predicting error rate 
compared with the preliminary SVDD model when dealing 
with pattern classification problem under same experiments 
conditions such as samples dataset and parameters of models. 
We will extend our model to deal with multi-classification 
problems.  
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